skip_on_cran() files <- list.files(path = file.path(system.file(package = "dismo"), "ex"), pattern = "grd", full.names = TRUE) predictors <- terra::rast(files) folder <- "trash" test_that("All files are created", { withr::defer(unlink(file.path(getwd(), folder), recursive = TRUE)) modelReport(SDMtune:::bm_maxnet, type = "cloglog", folder = folder, test = SDMtune:::t, permut = 1, env = predictors, jk = TRUE, response_curves = TRUE, verbose = FALSE) expect_true(file.exists(file.path(folder, "train.csv"))) expect_true(file.exists(file.path(folder, "test.csv"))) expect_true(file.exists(file.path(folder, "model.Rds"))) expect_true(file.exists(file.path(folder, "map.tif"))) expect_true(file.exists(file.path(folder, "virtual_species.html"))) expect_true(file.exists(file.path(folder, "plots", "ROC_curve.png"))) expect_true(file.exists(file.path(folder, "plots", "map.png"))) expect_true(file.exists(file.path(folder, "plots", "train_jk.png"))) expect_true(file.exists(file.path(folder, "plots", "test_jk.png"))) for (var in names(predictors)) { expect_true(file.exists( file.path(folder, "plots", paste0(var, "_marginal.png")) )) expect_true(file.exists( file.path(folder, "plots", paste0(var, "_univariate.png")) )) } }) test_that("Settings are correct", { data <- SDMtune:::t data@data <- data@data[, 1:4] m_ann <- train("ANN", data = data, size = 10) m_brt <- train("BRT", data = data, n.trees = 200, shrinkage = 0.2) m_rf <- train("RF", data = data, mtry = 2, ntree = 200) params = list(model = SDMtune:::bm_maxent, type = "cloglog", test = SDMtune:::t, folder = folder, plot_folder = file.path(folder, "plots"), env = predictors, jk = FALSE, response_curves = FALSE, only_presence = FALSE, clamp = TRUE, permut = 1, factors = NULL, verbose = FALSE) # Maxent with training and testing datasets and prediction expect_snapshot_output(.write_report_model_settings(params)) # Maxnet without testing datasets and prediction params$model <- SDMtune:::bm_maxnet params$test <- NULL params$env <- NULL expect_snapshot_output(.write_report_model_settings(params)) # ANN params$model <- m_ann expect_snapshot_output(.write_report_model_settings(params)) # BRT params$model <- m_brt expect_snapshot_output(.write_report_model_settings(params)) # RF params$model <- m_rf expect_snapshot_output(.write_report_model_settings(params)) })