set.seed(1) n <- 50 X <- matrix(rnorm(n * 20), nrow = n) Y <- rnorm(n) # fit in parallel set.seed(33) expect_no_error( fit <- SDForest(x = X, y = Y, Q_type = 'no_deconfounding', nTree = 2, mc.cores = 2, verbose = FALSE) ) # predict in parallel expect_no_error( pred <- predict(fit, newdata = data.frame(X), mc.cores = 2) ) # reproducibility set.seed(33) fit2 <- SDForest(x = X, y = Y, Q_type = 'no_deconfounding', nTree = 2, mc.cores = 2, verbose = FALSE) pred2 <- predict(fit2, newdata = data.frame(X), mc.cores = 2) # compare everything except the data.trees forest_ind <- which(names(fit) == "forest") expect_equal(fit[-forest_ind], fit2[-forest_ind]) expect_equal(pred, pred2)