############################################################################## # Alaplafit # checks against original implementation of subbotools # Depends on using the same sample to fit as the subbotools package # since R changes the rng in each version, to work this test must be manually # updated each time or use a constant sample skip() paste0("Alaplafit") test_that("SubLaplace:", { # laplaafit -V 3 < sublaplace.txt # #--- FINAL RESULT ----------------------------------- # | correlation matrix # value std.err | m al ar # m = 0.003138 0.07193 | 1.0000 0.0834 -0.0833 # al = 6.001 0.07198 | 0.0834 1.0000 0.0000 # ar = 5.993 0.07188 | -0.0833 0.0000 1.0000 #---------------------------------------------------- # m al ar log-like # 3.1378e-03 6.0011e+00 5.9930e+00 3.4844e+00 orig_value <- generate_orig_dt( coef = c(3.1378e-03, 6.0011e+00, 5.9930e+00), log_likelihood = 3.4844e+00, std_error = c(0.07193, 0.07198, 0.07188) # we pass the transposed matrix and the code corrects it , matrix = c( NA, 0.0834, -0.0833, 0.0834, NA, 0.0000, -0.0833, NA, NA ), distribution = "alaplafit" ) check_fits(orig_value, .5, alaplafit) }) test_that("Laplace:", { # laplaafit -V 3 < laplace.txt # #--- FINAL RESULT ----------------------------------- # | correlation matrix # value std.err | m al ar # m = 0.002405 0.001996 | 1.0000 0.5009 -0.5000 # al = 1.001 0.002 | 0.5009 1.0000 0.0000 # ar = 0.9974 0.001993 | -0.5000 0.0000 1.0000 #---------------------------------------------------- # m al ar log-like # 2.4055e-03 1.0008e+00 9.9740e-01 1.6923e+00 orig_value <- generate_orig_dt( coef = c(2.4055e-03, 1.0008e+00, 9.9740e-01), log_likelihood = 1.6923e+00, std_error = c(0.001996, 0.002, 0.001993), matrix = c( 1.0000, 0.5009, -0.5000, 0.5009, 1.0000, 0.0000, -0.5000, 0.0000, 1.0000 ), distribution = "alaplafit" ) check_fits(orig_value, 1, alaplafit) }) test_that("Subnormal:", { # laplaafit -V 3 < subnormal.txt # #--- FINAL RESULT ----------------------------------- # | correlation matrix # value std.err | m al ar # m = 0.001456 0.0008696 | 1.0000 0.7588 -0.7577 # al = 0.6604 0.0008709 | 0.7588 1.0000 0.0000 # ar = 0.6584 0.0008683 | -0.7577 0.0000 1.0000 #---------------------------------------------------- # m al ar log-like # 1.4560e-03 6.6038e-01 6.5843e-01 1.2767e+00 orig_value <- generate_orig_dt( coef = c(1.4560e-03, 6.6038e-01, 6.5843e-01), log_likelihood = 1.2767e+00, std_error = c(0.0008696, 0.0008709, 0.0008683), matrix = c( 1.0000, 0.7588, -0.7577, 0.7588, 1.0000, 0.0000, -0.7577, 0.0000, 1.0000 ), distribution = "alaplafit" ) check_fits(orig_value, 1.5, alaplafit) }) test_that("Normal:", { # laplaafit -V 3 < normal.txt # #--- FINAL RESULT ------------------------------------ # | correlation matrix # value std.err | m al ar # m = 0.001671 0.000637 | 1.0000 0.8866 -0.8853 # al = 0.5652 0.0006379 | 0.8866 1.0000 0.0000 # ar = 0.5635 0.0006361 | -0.8853 0.0000 1.0000 #----------------------------------------------------- # m al ar log-like # 1.6709e-03 5.6517e-01 5.6354e-01 1.1211e+00 orig_value <- generate_orig_dt( coef = c(1.6709e-03, 5.6517e-01, 5.6354e-01), log_likelihood = 1.1211e+00, std_error = c(0.000637, 0.0006379, 0.0006361), matrix = c( 1.0000, 0.8866, -0.8853, 0.8866, 1.0000, 0.0000, -0.8853, 0.0000, 1.0000 ), distribution = "alaplafit" ) check_fits(orig_value, 2, alaplafit) }) test_that("SuperNormal:", { # laplaafit -V 3 < supernormal.txt # #--- FINAL RESULT ------------------------------------ # | correlation matrix # value std.err | m al ar # m = 0.002735 0.0005506 | 1.0000 0.9542 -0.9516 # al = 0.5261 0.0005521 | 0.9542 1.0000 0.0000 # ar = 0.5233 0.0005491 | -0.9516 0.0000 1.0000 #----------------------------------------------------- # m al ar log-like # 2.7352e-03 5.2614e-01 5.2327e-01 1.0482e+00 orig_value <- generate_orig_dt( coef = c(2.7352e-03, 5.2614e-01, 5.2327e-01), log_likelihood = 1.0482e+00, std_error = c(0.0005506, 0.0005521, 0.0005491), matrix = c( 1.0000, 0.9542, -0.9516, 0.9542, 1.0000, 0.0000, -0.9516, 0.0000, 1.0000 ), distribution = "alaplafit" ) check_fits(orig_value, 2.5, alaplafit) }) ##############################################################################