library('Rsomoclu') data("rgbs", package = "Rsomoclu") input_data <- rgbs input_data <- data.matrix(input_data) nSomX <- 50 nSomY <- 50 nEpoch <- 10 radius0 <- 0 radiusN <- 0 radiusCooling <- "linear" scale0 <- 0 scaleN <- 0.01 scaleCooling <- "linear" kernelType <- 0 mapType <- "planar" gridType <- "rectangular" compactSupport <- FALSE codebook <- NULL neighborhood <- "gaussian" stdCoeff <- 0.5 res <- Rsomoclu.train(input_data, nEpoch, nSomX, nSomY, radius0, radiusN, radiusCooling, scale0, scaleN, scaleCooling, kernelType, mapType, gridType, compactSupport, neighborhood, stdCoeff, codebook) res$codebook res$globalBmus res$uMatrix library('kohonen') sommap = Rsomoclu.kohonen(input_data, res) ## Show 'codebook' plot(sommap, type="codes", main = "Codes") ## Show 'component planes' plot(sommap, type = "property", property = sommap$codes[[1]][,1], main = colnames(sommap$codes)[1]) ## Show 'U-Matrix' plot(sommap, type="dist.neighbours")