context("(0) Basic tests for CRAN") # These are just a very rudimentary tests that don't require time or saved files. # The full range of tests is run locally. test_that("Basic functionality works", { # fit a default model fit_default <- suppressWarnings(RoBTT(x1 = c(1, 2, 3), x2 = c(0, 1, 2), chains = 1, warmup = 50, iter = 100, seed = 1)) expect_equal(TRUE, is.RoBTT(fit_default)) expect_equal( capture_output_lines(fit_default, print = TRUE, width = 150), c("Call:" , "RoBTT(x1 = c(1, 2, 3), x2 = c(0, 1, 2), chains = 1, iter = 100, ", " warmup = 50, seed = 1)" , "" , "Estimates:" , " delta rho " , "-0.1988558 0.5066339 " ) ) expect_equal( capture_output_lines(summary(fit_default), print = TRUE, width = 150), c("Call:" , "RoBTT(x1 = c(1, 2, 3), x2 = c(0, 1, 2), chains = 1, iter = 100, " , " warmup = 50, seed = 1)" , "" , "Robust Bayesian t-test" , "Components summary:" , " Models Prior prob. Post. prob. Inclusion BF" , "Effect 4/8 0.500 0.436 0.775" , "Heterogeneity 4/8 0.500 0.417 0.717" , "Outliers 4/8 0.500 0.401 0.668" , "" , "Model-averaged estimates:" , " Mean Median 0.025 0.975" , "delta -0.199 0.000 -1.543 0.366" , "rho 0.507 0.500 0.191 0.862" , "nu Inf Inf 2.085 Inf" , "\033[0;31mModel (1): Minimum effective sample size was low (23).\033[0m" , "\033[0;31mModel (1): Maximum R-hat was large (1.18).\033[0m" , "\033[0;31mModel (2): Minimum effective sample size was low (9).\033[0m" , "\033[0;31mModel (2): Maximum R-hat was large (1.13).\033[0m" , "\033[0;31mModel (3): Minimum effective sample size was low (10).\033[0m" , "\033[0;31mThere were another 8 warnings. To see all warnings call 'check_RoBTT(fit)'.\033[0m" ) ) # test setup expect_equal( capture_output_lines(check_setup(models = FALSE), print = TRUE, width = 150), c("Robust Bayesian t-test (set-up)" , "Components summary:" , " Models Prior prob.", "Effect 4/8 0.500", "Heterogeneity 4/8 0.500", "Outliers 4/8 0.500" ) ) expect_equal( capture_output_lines(check_setup(models = TRUE), print = TRUE, width = 150), c("Robust Bayesian t-test (set-up)" , "Components summary:" , " Models Prior prob." , "Effect 4/8 0.500" , "Heterogeneity 4/8 0.500" , "Outliers 4/8 0.500" , "" , "Models overview:" , " Model Distribution Prior delta Prior rho Prior nu Prior prob.", " 1 normal Spike(0) Spike(0.5) None 0.125", " 2 t Spike(0) Spike(0.5) Exponential(1) 0.125", " 3 normal Spike(0) Beta(1, 1) None 0.125", " 4 t Spike(0) Beta(1, 1) Exponential(1) 0.125", " 5 normal Cauchy(0, 0.71) Spike(0.5) None 0.125", " 6 t Cauchy(0, 0.71) Spike(0.5) Exponential(1) 0.125", " 7 normal Cauchy(0, 0.71) Beta(1, 1) None 0.125", " 8 t Cauchy(0, 0.71) Beta(1, 1) Exponential(1) 0.125" ) ) expect_equal( capture_output_lines(check_setup(models = TRUE, prior_nu = NULL), print = TRUE, width = 150), c( "Robust Bayesian t-test (set-up)" , "Components summary:" , " Models Prior prob." , "Effect 2/4 0.500" , "Heterogeneity 2/4 0.500" , "Outliers 0/4 0.000" , "" , "Models overview:" , " Model Distribution Prior delta Prior rho Prior nu Prior prob.", " 1 normal Spike(0) Spike(0.5) None 0.250", " 2 normal Spike(0) Beta(1, 1) None 0.250", " 3 normal Cauchy(0, 0.71) Spike(0.5) None 0.250", " 4 normal Cauchy(0, 0.71) Beta(1, 1) None 0.250" )) })