R Under development (unstable) (2023-12-12 r85669 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(Rmixmod) Loading required package: Rcpp Rmixmod v. 2.1.10 / URI: www.mixmod.org > data(iris) > data <- iris[, 1:4] > > mixmodCluster(data, nbCluster = c(2, 3, 4)) **************************************** *** INPUT: **************************************** * nbCluster = 2 3 4 * criterion = BIC **************************************** *** MIXMOD Models: * list = Gaussian_pk_Lk_C * This list includes only models with free proportions. **************************************** * data (limited to a 10x10 matrix) = Sepal.Length Sepal.Width Petal.Length Petal.Width [1,] 5.1 3.5 1.4 0.2 [2,] 4.9 3 1.4 0.2 [3,] 4.7 3.2 1.3 0.2 [4,] 4.6 3.1 1.5 0.2 [5,] 5 3.6 1.4 0.2 [6,] 5.4 3.9 1.7 0.4 [7,] 4.6 3.4 1.4 0.3 [8,] 5 3.4 1.5 0.2 [9,] 4.4 2.9 1.4 0.2 [10,] 4.9 3.1 1.5 0.1 * ... ... **************************************** *** MIXMOD Strategy: * algorithm = EM * number of tries = 1 * number of iterations = 200 * epsilon = 0.001 *** Initialization strategy: * algorithm = smallEM * number of tries = 10 * number of iterations = 5 * epsilon = 0.001 * seed = NULL **************************************** **************************************** *** BEST MODEL OUTPUT: *** According to the BIC criterion **************************************** * nbCluster = 4 * model name = Gaussian_pk_Lk_C * criterion = BIC(602.9183) * likelihood = -221.2890 **************************************** *** Cluster 1 * proportion = 0.3095 * means = 5.9258 2.7665 4.2189 1.3036 * variances = | 0.2043 0.0698 0.1260 0.0337 | | 0.0698 0.0909 0.0491 0.0265 | | 0.1260 0.0491 0.1412 0.0354 | | 0.0337 0.0265 0.0354 0.0320 | *** Cluster 2 * proportion = 0.1317 * means = 5.2666 3.7572 1.4466 0.2519 * variances = | 0.1224 0.0418 0.0755 0.0202 | | 0.0418 0.0544 0.0294 0.0159 | | 0.0755 0.0294 0.0846 0.0212 | | 0.0202 0.0159 0.0212 0.0192 | *** Cluster 3 * proportion = 0.2016 * means = 4.8358 3.2129 1.4721 0.2422 * variances = | 0.1087 0.0371 0.0670 0.0179 | | 0.0371 0.0484 0.0261 0.0141 | | 0.0670 0.0261 0.0751 0.0188 | | 0.0179 0.0141 0.0188 0.0170 | *** Cluster 4 * proportion = 0.3571 * means = 6.5534 2.9634 5.5016 1.9988 * variances = | 0.3864 0.1320 0.2382 0.0637 | | 0.1320 0.1718 0.0928 0.0501 | | 0.2382 0.0928 0.2669 0.0669 | | 0.0637 0.0501 0.0669 0.0605 | **************************************** > > proc.time() user system elapsed 0.32 0.06 0.37