.evaluate.fuzzycoco_fit <- test_that("evaluate.fuzzycoco_fit", { CASE <- example_mtcars() df <- CASE$data pms <- CASE$params ####################### regression one variable: hp ######################## model <- fuzzycoco("regression", pms, seed = 123) x <- df[-2] y <- df[2] fit <- fit_xy(model, x, y, engine = "rcpp", max_generations = 30) res <- evaluate(fit, cbind(x, y)) ref <- fit$fit ref$generations <- NULL expect_equal(res, ref) # a data frame not in order res2 <- evaluate(fit, cbind(y, x)) expect_identical(res2, res) ####################### regression 2 variables and 2 regressors ######################## model <- fuzzycoco("regression", pms, seed = 123) responses <- c("qsec", "hp") x <- df[setdiff(names(df), responses)]; y <- df[responses] fit <- fit_xy(model, x, y, engine = "rcpp", max_generations = 50) res <- evaluate(fit, cbind(x, y)) y2 <- predict(fit, x) ref <- fit$fit ref$generations <- NULL expect_equal(res, ref) ####################### classification one variable: wt ######################## pms$output_vars_params$nb_sets <- 2 pms$output_vars_params$nb_bits_sets <- 1 model <- fuzzycoco("classification", pms, seed = 123) response <- "wt" x <- df[setdiff(names(df), response)] y0 <- df[response] y <- bin_continuous_responses_to_01(y0) fit <- fit_xy(model, x, y, engine = "rcpp", max_generations = 30) res <- evaluate(fit, cbind(y, x)) ref <- fit$fit ref$generations <- NULL expect_equal(res, ref) ####################### classification 3 variables and 1 regressors ######################## model <- fuzzycoco("classification", pms, seed = 123) responses <- c("qsec", "wt", "hp") x <- df[setdiff(names(df), responses)] y0 <- df[responses] y <- bin_continuous_responses_to_01(y0) fit <- fit_xy(model, x, y, engine = "rcpp", max_generations = 50) res <- evaluate(fit, cbind(x, y)) ref <- fit$fit ref$generations <- NULL expect_equal(res, ref) })