# Test 1: Check if tts works properly test_that("Normalization works properly", { # Create some test data x <- matrix(c( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ), ncol = 3) x <- data.frame(x) y <- c(1, 2, 3, 4) dfs <- train_test_split(x, y, validation_split = 0.5) expect_equal(dim(dfs$train_x)[[1]], 2) }) # Test 2: Check if tts raises exc for neg val split test_that("Negative val split handled", { # Create some test data x <- matrix(c( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ), ncol = 3) x <- data.frame(x) y <- c(1, 2, 3, 4) err <- tryCatch({ train_test_split(x, y, validation_split = -0.5) return(FALSE) }, error = function(e) { return(TRUE) }) expect_true(err) }) # Test 3: Check if tts raises exc for >1 val split test_that("Greater than 1 val split handled", { # Create some test data x <- matrix(c( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ), ncol = 3) x <- data.frame(x) y <- c(1, 2, 3, 4) err <- tryCatch({ train_test_split(x, y, validation_split = 1.5) return(FALSE) }, error = function(e) { return(TRUE) }) expect_true(err) })