context("validateMap") lsat_t <- lsat lsat_t <- lsat_t[[1:4]] ## Set-up test data set.seed(1) poly <- readRDS(system.file("external/trainingPolygons.rds", package="RStoolbox")) poly$classNum <- as.numeric(poly$class) sc <- superClass(lsat_t, trainData = poly, nSamples = 50, responseCol = "class", model = "mlc", trainPartition = 0.7, predict = TRUE) test_that("classification, without class mapping",{ val <- validateMap(sc$map, valData = poly, nSample =50, responseCol = "classNum", classMapping = NULL) expect_is(val, "mapValidation") expect_equal(lapply(val, "class"), list(performance="confusionMatrix",validationSet = "data.frame")) expect_equal(colnames(val$validationSet), c("reference", "prediction", "cell")) }) test_that("classification, with class mapping",{ skip_on_cran() val <- validateMap(sc$map, valData = poly, nSample = 50, responseCol = "class", classMapping = sc$classMapping) expect_is(val, "mapValidation") expect_output(print(val), "performance") expect_equal(lapply(val, "class"), list(performance="confusionMatrix",validationSet = "data.frame")) expect_equal(colnames(val$validationSet), c("reference", "prediction", "cell")) }) test_that("regression",{ skip_on_cran() val <- validateMap(sc$map, valData = poly, nSample = 50, mode = "regression", responseCol = "classNum") expect_is(val, "mapValidation") expect_equal(lapply(val, "class"), list(performance="numeric",validationSet = "data.frame")) expect_equal(colnames(val$validationSet), c("reference", "prediction", "cell")) expect_equal(names(val$performance)[1:2], c("RMSE", "Rsquared")) })