context("Kernelized Least Squares Classifier") data(testdata) modelform <- testdata$modelform classname<-all.vars(modelform)[1] D <- testdata$D D_test <- testdata$D_test X <- testdata$X X_u <- testdata$X_u y <- testdata$y X_test <- testdata$X_test y_test <- testdata$y_test test_that("Kernel and Linear give same result: 2 class", { dmat<-model.matrix(Species~.-1,iris[51:150,]) tvec<-droplevels(iris$Species[51:150]) testdata <- data.frame(tvec,dmat[,1:4]) colnames(testdata)<-c("Class","X1","X2") g_kernel<-KernelLeastSquaresClassifier(dmat[,1:4],tvec,kernel=kernlab::vanilladot(),lambda=0.000001,scale = TRUE) g_linear<-LeastSquaresClassifier(dmat[,1:4],tvec,intercept=TRUE) expect_equal(predict(g_kernel,dmat[,1:4]), predict(g_linear,dmat[,1:4])) expect_equal(loss(g_kernel,dmat[,1:4],tvec), loss(g_linear,dmat[,1:4],tvec),tolerance =10e-6) }) test_that("Kernel and Linear give same result: 3 class", { dmat<-model.matrix(Species~.-1,iris) tvec<-iris$Species testdata <- data.frame(tvec,dmat[,1:2]) colnames(testdata)<-c("Class","X1","X2") g_kernel <- KernelLeastSquaresClassifier(dmat[,1:2],tvec, kernel=kernlab::vanilladot(),lambda=0.000001,scale = TRUE) g_linear <- LeastSquaresClassifier(dmat[,1:2],tvec,intercept=TRUE) expect_equal(as.numeric(decisionvalues(g_kernel,dmat[,1:2])), as.numeric(decisionvalues(g_linear,dmat[,1:2])), tolerance=10e-7) expect_equal(predict(g_kernel,dmat[,1:2]), predict(g_linear,dmat[,1:2])) expect_equal(loss(g_kernel,dmat[,1:2],tvec), loss(g_linear,dmat[,1:2],tvec),tolerance =10e-6) }) test_that("Linear and Kernel implementation give the same answer.", { # These should all be the same g_1<-LeastSquaresClassifier(X,y,intercept=TRUE,scale=TRUE) s1 <- sum(loss(g_1,X_test,y_test)) g_2<-LeastSquaresClassifier(X,y,intercept=TRUE,x_center=TRUE,scale=TRUE) expect_equal(s1, sum(loss(g_2,X_test,y_test))) g_3<-LeastSquaresClassifier(X,y,intercept=TRUE,x_center=TRUE,scale=TRUE,y_scale=TRUE) expect_equal(s1, sum(loss(g_3,X_test,y_test))) g_4<-LeastSquaresClassifier(X,y,intercept=TRUE,scale=TRUE,x_center=TRUE,y_scale=FALSE) expect_equal(s1, sum(loss(g_4,X_test,y_test))) g_5<-LeastSquaresClassifier(X,y,intercept=FALSE,scale=TRUE,x_center=TRUE,y_scale=TRUE) expect_equal(s1, sum(loss(g_5,X_test,y_test))) g_6<-KernelLeastSquaresClassifier(X,y,lambda=0.00001,scale=TRUE,x_center=TRUE,y_scale=TRUE) expect_equal(s1, sum(loss(g_6,X_test,y_test)),tolerance=10e-3) # No y scaling, no intercept should give the same bad answer g_1<-LeastSquaresClassifier(X,y,intercept=FALSE,scale=TRUE,x_center=TRUE,y_scale=FALSE) g_2<-KernelLeastSquaresClassifier(X,y,lambda=0.000000001,scale=TRUE,x_center=TRUE,y_scale=FALSE) expect_equal(sum(loss(g_1,X_test,y_test)),sum(loss(g_2,X_test,y_test))) })