context("Updated Second Moment Least Squares Classifier") # Simple dataset used in the tests data(testdata) modelform <- testdata$modelform classname<-all.vars(modelform)[1] D <- testdata$D D_test <- testdata$D_test X <- testdata$X X_u <- testdata$X_u y <- testdata$y X_test <- testdata$X_test y_test <- testdata$y_test test_that("Formula and matrix formulation give same results",{ g_matrix <- USMLeastSquaresClassifier(X,factor(y),X_u) g_model <- USMLeastSquaresClassifier(modelform, D) expect_equal(predict(g_matrix,X_test),predict(g_model,D_test)) expect_equal(loss(g_matrix, X_test, y_test),loss(g_model, D_test)) expect_equal(g_matrix@classnames,g_model@classnames) }) test_that("Different settings return the same loss",{ g_1<-USMLeastSquaresClassifier(X,y,X_u,intercept=TRUE,scale=TRUE) g_2<-USMLeastSquaresClassifier(X,y,X_u,intercept=TRUE,x_center=TRUE,scale=TRUE) expect_equal(loss(g_1,X_test,y_test),loss(g_2,X_test,y_test),tolerance=10e-6) # We get a different loss when we center the output g_3<-USMLeastSquaresClassifier(X,y,X_u,intercept=TRUE,x_center=TRUE,scale=TRUE,y_scale=TRUE) g_4<-USMLeastSquaresClassifier(X,y,X_u,intercept=TRUE,scale=TRUE,x_center=TRUE,y_scale=TRUE) expect_equal(loss(g_3,X_test,y_test),loss(g_4,X_test,y_test),tolerance=10e-6) })