context("Nearest Mean Classifier") # Simple dataset used in the tests data(testdata) modelform <- testdata$modelform classname<-all.vars(modelform)[1] D <- testdata$D D_test <- testdata$D_test X <- testdata$X X_u <- testdata$X_u y <- testdata$y X_test <- testdata$X_test y_test <- testdata$y_test test_that("Formula and matrix formulation give same results",{ g_matrix <- NearestMeanClassifier(X,y) g_model <- NearestMeanClassifier(modelform, D) expect_that(1-mean(predict(g_matrix,X_test)==y_test), is_equivalent_to(1-mean(predict(g_model,D_test)==D_test[,classname]))) # Same classification error? expect_that(loss(g_matrix, X_test, y_test),is_equivalent_to(loss(g_model, D_test))) # Same loss on test set? expect_that(g_matrix@classnames,is_equivalent_to(g_model@classnames)) # Class names the same? }) test_that("Invariant to centering", { g_unscaled <- NearestMeanClassifier(X, y, x_center=TRUE, scale=FALSE) g_unscaled2 <- NearestMeanClassifier(X, y, x_center=FALSE, scale=FALSE) expect_equal(predict(g_unscaled2, X_test),predict(g_unscaled, X_test)) expect_equal(loss(g_unscaled, X_test, y_test),loss(g_unscaled2, X_test, y_test)) expect_equal(posterior(g_unscaled2, X_test),posterior(g_unscaled, X_test)) expect_equal(line_coefficients(g_unscaled), line_coefficients(g_unscaled2)) })