context("Laplacian Kernel Least Squares Classifier") data(testdata) modelform <- testdata$modelform classname<-all.vars(modelform)[1] D <- testdata$D D_test <- testdata$D_test X <- testdata$X X_u <- testdata$X_u y <- testdata$y X_test <- testdata$X_test y_test <- testdata$y_test test_that("Laplacian with gamma almost 0 and supervised give the same result", { #Scaling needs to be turned off, otherwise scaling is done differently for the supervised and semi-supervised method. g_lap <- LaplacianKernelLeastSquaresClassifier(X,y,X_u, kernel=kernlab::vanilladot(), gamma=10e-8, lambda=0.0000001, scale = FALSE,y_scale=TRUE, x_center=FALSE) g_sup <- KernelLeastSquaresClassifier(X,y, lambda=0.0000001, scale=FALSE,x_center=FALSE, y_scale=TRUE) sum(loss(g_sup,X_test,y_test)) sum(loss(g_lap,X_test,y_test)) expect_equal(predict(g_lap,X_test), predict(g_sup,X_test)) expect_equal(loss(g_lap,X_test,y_test), loss(g_sup,X_test,y_test),tolerance =10e-5) })