context("Kernelized Implicitly Constrained Least Squares Classifier") data(testdata) modelform <- testdata$modelform classname<-all.vars(modelform)[1] D <- testdata$D D_test <- testdata$D_test X <- testdata$X X_u <- testdata$X_u y <- testdata$y X_test <- testdata$X_test y_test <- testdata$y_test test_that("Kernel and Linear give same result: 2 class", { g_kernel <- KernelICLeastSquaresClassifier(X,y,X_u,kernel=kernlab::vanilladot(),lambda=0.0000001, scale = TRUE,projection="supervised",y_scale=TRUE,x_center=TRUE) g_linear <- ICLeastSquaresClassifier(X,y,X_u,intercept=FALSE,scale=TRUE,x_center=TRUE,y_scale=TRUE) sum(loss(g_linear,X_test,y_test)) sum(loss(g_kernel,X_test,y_test)) expect_equal(predict(g_kernel,X_test), predict(g_linear,X_test)) expect_equal(loss(g_kernel,X_test,y_test), loss(g_linear,X_test,y_test),tolerance =10e-5) }) test_that("Kernel and Linear give the same result for supervised projection settings", { # Same for supervised projection g_linear<-ICLeastSquaresClassifier(X,y,X_u, projection="supervised", intercept=FALSE, x_center=TRUE, scale=TRUE,y_scale=TRUE) g_kernel<-KernelICLeastSquaresClassifier(X,y,X_u, projection="supervised", kernel=kernlab::vanilladot(), lambda=0.0000001, x_center=TRUE, scale = TRUE, y_scale=TRUE) expect_equal(mean(loss(g_linear,X_test,y_test)),mean(loss(g_kernel,X_test,y_test)), tolerance=10e-6) expect_equal(as.numeric(g_linear@theta), as.numeric(t(g_kernel@Xtrain) %*% g_kernel@theta),tolerance=10e-5) expect_equal(decisionvalues(g_kernel,X_test), decisionvalues(g_linear,X_test),tolerance=10e-5) expect_equal(g_linear@scaling, g_kernel@scaling) expect_equal(g_linear@y_scale, g_kernel@y_scale) }) test_that("Kernel and Linear give the same result for semi-supervised projection", { g_linear <- ICLeastSquaresClassifier(X,y,X_u, projection="semisupervised", intercept=FALSE, x_center=TRUE, scale=TRUE, y_scale=TRUE) g_kernel <- KernelICLeastSquaresClassifier(X,y,X_u, projection="semisupervised", kernel=kernlab::vanilladot(), lambda=10e-10, x_center=TRUE, scale = TRUE, y_scale=TRUE) expect_equal(mean(loss(g_linear,X_test,y_test)), mean(loss(g_kernel,X_test,y_test)), tolerance=10e-5) expect_equal(mean(loss(g_linear,X,y)), mean(loss(g_kernel,X,y)), tolerance=10e-6) expect_equal(as.numeric(g_linear@theta), as.numeric(t(g_kernel@Xtrain) %*% g_kernel@theta), tolerance=10e-5) expect_equal(decisionvalues(g_kernel,X_test), decisionvalues(g_linear,X_test), tolerance=10e-5) expect_equal(g_linear@scaling, g_kernel@scaling) expect_equal(g_linear@y_scale, g_kernel@y_scale) })