context("Implicitly Constrained Least Squares Classifier") # Simple dataset used in the tests data(testdata) modelform <- formula(y~X1+X2) classname<-all.vars(modelform)[1] D <- testdata$D D_test <- testdata$D_test X <- testdata$X X_u <- testdata$X_u y <- testdata$y X_test <- testdata$X_test y_test <- testdata$y_test test_that("Formula and matrix formulation give same results",{ g_matrix <- ICLeastSquaresClassifier(X,factor(y),X_u) g_model <- ICLeastSquaresClassifier(modelform, D) expect_that(1-mean(predict(g_matrix,X_test)==y_test),is_equivalent_to(1-mean(predict(g_model,D_test)==D_test[,classname]))) # Same classification error? expect_that(loss(g_matrix, X_test, y_test),is_equivalent_to(loss(g_model, D_test))) expect_equal(g_matrix@classnames,g_model@classnames) # Class names the same? }) test_that("Different settings return the same loss",{ g_1<-ICLeastSquaresClassifier(X,y,X_u,intercept=TRUE,scale=TRUE) s1 <- mean(loss(g_1,X_test,y_test)) g_2<-ICLeastSquaresClassifier(X,y,X_u,intercept=TRUE,x_center=TRUE,scale=TRUE) expect_equal(s1,mean(loss(g_2,X_test,y_test)),tolerance=10e-6) g_3<-ICLeastSquaresClassifier(X,y,X_u,intercept=TRUE,x_center=TRUE,scale=TRUE,y_scale=TRUE) expect_equal(s1,mean(loss(g_3,X_test,y_test)),tolerance=10e-6) g_4<-ICLeastSquaresClassifier(X,y,X_u,intercept=TRUE,scale=TRUE,x_center=TRUE,y_scale=TRUE) expect_equal(s1,mean(loss(g_4,X_test,y_test)),tolerance=10e-6) }) test_that("Multi class gives an output", { dmat<-model.matrix(Species~.-1,iris[1:150,]) tvec<-droplevels(iris$Species[1:150]) set.seed(42) problem<-split_dataset_ssl(dmat,tvec,frac_train=0.5,frac_ssl=0.5) g_sup <- ICLeastSquaresClassifier(problem$X,problem$y,problem$X_u, projection="supervised",method="QP",eps=10e-10) g_semi <- ICLeastSquaresClassifier(problem$X,problem$y,problem$X_u, projection="semisupervised",method="QP",eps=10e-10) g_euc <- ICLeastSquaresClassifier(problem$X,problem$y,problem$X_u, projection="euclidean",method="QP",eps=10e-10) # Output has three different classes expect_equal(length(levels(predict(g_sup,problem$X_test))),3) expect_equal(length(levels(predict(g_semi,problem$X_test))),3) expect_equal(length(levels(predict(g_euc,problem$X_test))),3) # Correct number of predictions on example dataset expect_equal(length(predict(g_sup,problem$X_test)),75) expect_equal(length(predict(g_semi,problem$X_test)),75) expect_equal(length(predict(g_euc,problem$X_test)),75) }) test_that("Different methods", { g_sup <- ICLeastSquaresClassifier(X,y,X_u, projection="supervised",method="QP",eps=10e-10) g_sup_lbfgs <- ICLeastSquaresClassifier(X,y,X_u, projection="supervised",method="LBFGS",eps=10e-10) expect_equal(predict(g_sup,X_test),predict(g_sup_lbfgs,X_test)) g_semi <- ICLeastSquaresClassifier(X,y,X_u, projection="semisupervised",method="QP",eps=10e-10) g_semi_lbfgs <- ICLeastSquaresClassifier(X,y,X_u, projection="semisupervised",method="LBFGS",eps=10e-10) g_semiold <- ICLeastSquaresClassifier(X,y,X_u, projection="semisupervisedold",method="LBFGS",eps=10e-10) expect_equal(loss(g_semi,X_test,y_test),loss(g_semi_lbfgs,X_test,y_test),tolerance=10e-6) expect_equal(loss(g_semi,X_test,y_test),loss(g_semiold,X_test,y_test),tolerance=10e-5) })