context("Crossvalidation") test_that("Example Runs",{ X <- model.matrix(Species~.-1,data=iris) y <- iris$Species classifiers <- list("LS"=function(X,y,X_u,y_u) {LeastSquaresClassifier(X,y,lambda=0)}, "RLS"=function(X,y,X_u,y_u) {LeastSquaresClassifier(X,y,lambda=10)}) measures <- list("Accuracy" = measure_accuracy, "Loss" = measure_losstest, "Loss labeled" = measure_losslab, "Loss Lab+Unlab" = measure_losstrain ) lc <- CrossValidationSSL(X,y,classifiers=classifiers, measures=measures,n_l=10,repeats=3) expect_silent(plot(lc)) lc <- c("D1"=lc,"D2"=lc) # Merge results on two datasets into one object expect_output(print(lc)) expect_silent(plot(lc)) lc1 <- CrossValidationSSL(list("D1"=X,"D2"=X),list("D1"=y,"D2"=y),classifiers=classifiers, measures=measures,n_l="enough",repeats=3,pre_pca=TRUE) lc2 <- CrossValidationSSL(list("D1"=formula(Species~.)),list("D1"=na.omit(iris)), classifiers=classifiers, measures=measures,n_l=10,repeats=3,leaveout="labeled") })