# download wine dataset from UCI Machine Learning Repository # 174 recordes, 14 variables # tmp <- tempfile() # download.file("http://archive.ics.uci.edu/static/public/109/wine.zip", tmp) # wine <- read.csv(unz(tmp, "wine.data"), header=F) data(wine) o1 <- RMSDp(wine[,-1], cores=2) sum(o1$ot-1) # number of outliers # plot # dev.new(width=16, height=16) pairs(wine[,-1], pch=20, col=o1$ot)