library(tidyllm) # Helper function to skip if no API keys are available skip_if_no_api_key <- function() { skip_if_not( nzchar(Sys.getenv("OPENAI_API_KEY")) || nzchar(Sys.getenv("ANTHROPIC_API_KEY")) || nzchar(Sys.getenv("GOOGLE_API_KEY")), "No API keys found (need OPENAI_API_KEY, ANTHROPIC_API_KEY, or GOOGLE_API_KEY)" ) } # Helper function to find README.md file in current or parent directories find_readme_path <- function() { readme_paths <- c("Readme.md", "../Readme.md", "../../Readme.md") for (path in readme_paths) { if (file.exists(path)) { return(path) } } return(NULL) } # Helper function to read README content read_readme_content <- function() { readme_path <- find_readme_path() if (is.null(readme_path)) { return(NULL) } readme_content <- readLines(readme_path) # Find the line with "## Installation" and truncate before it installation_line <- grep("^## Installation", readme_content, ignore.case = TRUE) if (length(installation_line) > 0) { readme_content <- readme_content[1:(installation_line[1] - 1)] } paste(readme_content, collapse = "\n") } # Helper function to call LLM API using tidyllm call_llm_api <- function(prompt, max_tokens = 500, temperature = 0.1, model = LLM_MODEL) { cat("Calling LLM API with model:", model, "\n") # Only print prompt up to the beginning of README content readme_start <- regexpr("README Documentation:", prompt, fixed = TRUE) if (readme_start > 0) { prompt_preview <- substr(prompt, 1, readme_start - 1) cat("Prompt (up to README):\n", prompt_preview, "\n") } else { cat("Prompt:\n", prompt, "\n") } tryCatch( { # Determine the provider based on model name if (grepl("^gpt-", model, ignore.case = TRUE)) { provider <- openai() } else if (grepl("^claude-", model, ignore.case = TRUE)) { provider <- claude() } else if (grepl("^gemini-", model, ignore.case = TRUE)) { # Debug Gemini API key provider <- gemini() } else { stop(paste("Unsupported model:", model, "- supported prefixes: gpt-, claude-, gemini-")) } # Use tidyllm unified API result <- llm_message(prompt) |> chat( .provider = provider, .model = model, .temperature = temperature, .max_tries = 3 ) # Extract the reply text get_reply(result) }, error = function(e) { if (grepl("429", as.character(e))) { skip("LLM API rate limit exceeded - please try again later or check your API key/credits") } else if (grepl("401", as.character(e))) { skip("LLM API authentication failed - please check your API keys (OPENAI_API_KEY, ANTHROPIC_API_KEY, or GOOGLE_API_KEY)") } else { stop(paste("LLM API error:", as.character(e))) } } ) } # Configuration variables # LLM_MODEL <- "gpt-4o-mini" # OpenAI model option # LLM_MODEL <- "claude-3-5-sonnet-latest" # Claude model option # LLM_MODEL <- "claude-3-7-sonnet-latest" # Claude model option # LLM_MODEL <- "claude-sonnet-4-0" # Claude model option LLM_MODEL <- "gemini-2.5-pro" # Google Gemini model option # LLM_MODEL <- "gemini-1.5-pro" # Google Gemini model option # LLM_MODEL <- "gemini-2.5-flash" # Google Gemini model option (faster) # Helper function to create README-guided prompt create_readme_prompt <- function(task_description, specific_task) { readme_text <- read_readme_content() if (is.null(readme_text)) { stop("README.md not found") } paste0( "You are an expert R programmer. Based on the following README documentation for the RKorAPClient package, ", task_description, "\n\n", "README Documentation:\n", readme_text, "\n\nTask: ", specific_task, "\n\nProvide only the R code without explanations." ) } # Helper function to extract R code from markdown code blocks extract_r_code <- function(response_text) { # Remove markdown code blocks if present code <- gsub("```[rR]?\\n?", "", response_text) code <- gsub("```\\n?$", "", code) # Remove leading/trailing whitespace trimws(code) } # Helper function to test code syntax test_code_syntax <- function(code) { tryCatch( { parse(text = code) TRUE }, error = function(e) { cat("Syntax error:", as.character(e), "\n") FALSE } ) } # Helper function to run code if RUN_LLM_CODE is set run_code_if_enabled <- function(code, test_name) { if (nzchar(Sys.getenv("RUN_LLM_CODE")) && Sys.getenv("RUN_LLM_CODE") == "true") { cat("Running generated code for", test_name, "...\n") tryCatch( { result <- eval(parse(text = code)) cat("Code executed successfully. Result type:", class(result), "\n") if (is.data.frame(result)) { cat("Result dimensions:", nrow(result), "rows,", ncol(result), "columns\n") if (nrow(result) > 0) { cat("First few rows:\n") print(head(result, 3)) } } else { cat("Result preview:\n") print(result) } return(TRUE) }, error = function(e) { cat("Runtime error:", as.character(e), "\n") return(FALSE) } ) } else { cat("Skipping code execution (set RUN_LLM_CODE=true to enable)\n") return(NA) } } test_that(paste(LLM_MODEL, "can solve frequency query task with README guidance"), { # Skip if offline skip_if_offline() # Skip if no API keys are set skip_if_no_api_key() # Check for README file skip_if_not(!is.null(find_readme_path()), "Readme.md not found in current or parent directories") # Create the prompt with README context and task prompt <- create_readme_prompt( "write R code to perform a frequency query for the word 'Demokratie' across the past three years. The code should use the RKorAPClient package and return a data frame.", "Write R code to query frequency of 'Demokratie' from the past three years using RKorAPClient." ) # Call LLM API generated_response <- call_llm_api(prompt, max_tokens = 500) generated_code <- extract_r_code(generated_response) # Basic checks on the generated code expect_true(grepl("KorAPConnection", generated_code), "Generated code should include KorAPConnection") expect_true(grepl("frequencyQuery", generated_code), "Generated code should include frequencyQuery") expect_true(grepl("Demokratie", generated_code), "Generated code should include the search term 'Demokratie'") last_year <- as.numeric(format(Sys.Date(), "%Y")) - 1 expect_true(grepl("Date in", generated_code), "Generated code should vc restriction on years") # Check that the generated code contains essential RKorAPClient patterns # expect_true(grepl("\\|>", generated_code) || grepl("%>%", generated_code), "Generated code should use pipe operators") # Test code syntax syntax_valid <- test_code_syntax(generated_code) expect_true(syntax_valid, "Generated code should be syntactically valid R code") # Print the generated code for manual inspection cat("Generated code:\n", generated_code, "\n") # Run the code if RUN_LLM_CODE is set execution_result <- run_code_if_enabled(generated_code, "frequency query") if (!is.na(execution_result)) { expect_true(execution_result, "Generated code should execute without runtime errors") } }) test_that(paste(LLM_MODEL, "can solve collocation analysis task with README guidance"), { # Skip if offline skip_if_offline() # Skip if no API keys are set skip_if_no_api_key() # Check for README file skip_if_not(!is.null(find_readme_path()), "Readme.md not found in current or parent directories") # Create the prompt for collocation analysis prompt <- create_readme_prompt( paste("Write R code to perform a collocation analysis for the lemma 'leverage' based on the current English Wikipedia Corpus using default parameters", "and show the three highest collocates according to their log dice score. "), "Write R code to perform collocation analysis for lemma 'leverage' using RKorAPClient." ) # Call LLM API generated_response <- call_llm_api(prompt, max_tokens = 500) generated_code <- extract_r_code(generated_response) # Basic checks on the generated code expect_true(grepl("KorAPConnection", generated_code), "Generated code should include KorAPConnection") expect_true(grepl("collocationAnalysis", generated_code), "Generated code should include collocationAnalysis") expect_true(grepl("tt/l=leverage", generated_code), "Generated code should include the search the lemma 'leverage'") # expect_true(grepl("auth", generated_code), "Generated code should include auth() for collocation analysis") expect_true(grepl("instance/english", generated_code, fixed = TRUE), "Generated code should include the specified KorAP URL") # Test code syntax syntax_valid <- test_code_syntax(generated_code) expect_true(syntax_valid, "Generated code should be syntactically valid R code") # Print the generated code for manual inspection cat("Generated collocation analysis code:\n", generated_code, "\n") # Run the code if RUN_LLM_CODE is set execution_result <- run_code_if_enabled(generated_code, "collocation analysis") if (!is.na(execution_result)) { expect_true(execution_result, "Generated code should execute without runtime errors") } }) test_that(paste(LLM_MODEL, "can solve corpus query task with README guidance"), { # Skip if offline skip_if_offline() # Skip if no API keys are set skip_if_no_api_key() # Check for README file skip_if_not(!is.null(find_readme_path()), "Readme.md not found in current or parent directories") # Create the prompt for corpus query prompt <- create_readme_prompt( "write R code to perform a simple corpus query for 'Hello world' and fetch all results. The code should use the RKorAPClient package.", "Write R code to query 'Hello world' and fetch all results using RKorAPClient." ) # Call LLM API generated_response <- call_llm_api(prompt, max_tokens = 300) generated_code <- extract_r_code(generated_response) # Basic checks on the generated code expect_true(grepl("KorAPConnection", generated_code), "Generated code should include KorAPConnection") expect_true(grepl("corpusQuery", generated_code), "Generated code should include corpusQuery") expect_true(grepl("Hello world", generated_code), "Generated code should include the search term 'Hello world'") expect_true(grepl("fetchAll", generated_code), "Generated code should include fetchAll") # Check that the generated code follows the README example pattern expect_true( grepl("\\|>", generated_code) || grepl("%>%", generated_code), "Generated code should use pipe operators" ) # Test code syntax syntax_valid <- test_code_syntax(generated_code) expect_true(syntax_valid, "Generated code should be syntactically valid R code") # Print the generated code for manual inspection cat("Generated corpus query code:\n", generated_code, "\n") # Run the code if RUN_LLM_CODE is set execution_result <- run_code_if_enabled(generated_code, "corpus query") if (!is.na(execution_result)) { expect_true(execution_result, "Generated code should execute without runtime errors") } })