test_that("ci function works with basic input", { # Create a simple test data frame df <- data.frame( totalResults = c(100, 200, 50), total = c(1000, 2000, 500), query = c("test1", "test2", "test3") ) result <- ci(df) expect_s3_class(result, "data.frame") expect_true("f" %in% names(result)) expect_true("conf.low" %in% names(result)) expect_true("conf.high" %in% names(result)) expect_equal(nrow(result), 3) # Check that relative frequencies are calculated correctly expect_equal(result$f[1], 0.1, tolerance = 0.001) expect_equal(result$f[2], 0.1, tolerance = 0.001) expect_equal(result$f[3], 0.1, tolerance = 0.001) }) test_that("ci function handles custom column names", { # Test with custom column names df <- data.frame( observed = c(50, 100), N_total = c(500, 1000), condition = c("A", "B") ) result <- ci(df, x = observed, N = N_total) expect_s3_class(result, "data.frame") expect_true("f" %in% names(result)) expect_true("conf.low" %in% names(result)) expect_true("conf.high" %in% names(result)) expect_equal(nrow(result), 2) expect_equal(result$f[1], 0.1, tolerance = 0.001) expect_equal(result$f[2], 0.1, tolerance = 0.001) }) test_that("ci function handles different confidence levels", { df <- data.frame( totalResults = c(100), total = c(1000) ) # Test 90% confidence level result_90 <- ci(df, conf.level = 0.90) expect_s3_class(result_90, "data.frame") expect_true("f" %in% names(result_90)) expect_true("conf.low" %in% names(result_90)) expect_true("conf.high" %in% names(result_90)) # Test 99% confidence level result_99 <- ci(df, conf.level = 0.99) expect_s3_class(result_99, "data.frame") # 99% CI should be wider than 90% CI ci_width_90 <- result_90$conf.high[1] - result_90$conf.low[1] ci_width_99 <- result_99$conf.high[1] - result_99$conf.low[1] expect_true(ci_width_99 > ci_width_90) }) test_that("ci function handles zero and negative totals", { df <- data.frame( totalResults = c(10, 20, 30), total = c(100, 0, -10) ) result <- ci(df) expect_s3_class(result, "data.frame") expect_equal(nrow(result), 3) # First row should have valid values expect_false(is.na(result$f[1])) expect_false(is.na(result$conf.low[1])) expect_false(is.na(result$conf.high[1])) # Rows with zero or negative totals should have NA values expect_true(is.na(result$f[2])) expect_true(is.na(result$conf.low[2])) expect_true(is.na(result$conf.high[2])) expect_true(is.na(result$f[3])) expect_true(is.na(result$conf.low[3])) expect_true(is.na(result$conf.high[3])) }) test_that("ci function handles NA values in totals", { df <- data.frame( totalResults = c(10, 20, 30), total = c(100, NA, 300) ) result <- ci(df) expect_s3_class(result, "data.frame") expect_equal(nrow(result), 3) # First and third rows should have valid values expect_false(is.na(result$f[1])) expect_false(is.na(result$f[3])) # Second row (with NA total) should have NA values expect_true(is.na(result$f[2])) expect_true(is.na(result$conf.low[2])) expect_true(is.na(result$conf.high[2])) }) test_that("ci function handles edge cases with very small frequencies", { df <- data.frame( totalResults = c(1, 0), total = c(1000000, 1000000) ) result <- ci(df) expect_s3_class(result, "data.frame") expect_equal(nrow(result), 2) # Check that very small frequencies are handled correctly expect_true(result$f[1] > 0) expect_true(result$f[1] < 0.01) expect_equal(result$f[2], 0) }) test_that("ci function handles large numbers correctly", { df <- data.frame( totalResults = c(1000000), total = c(10000000) ) result <- ci(df) expect_s3_class(result, "data.frame") expect_equal(nrow(result), 1) expect_equal(result$f[1], 0.1, tolerance = 0.001) expect_true(result$conf.low[1] > 0) expect_true(result$conf.high[1] < 1) }) test_that("ci function preserves original columns", { df <- data.frame( totalResults = c(100, 200), total = c(1000, 2000), query = c("test1", "test2"), condition = c("A", "B"), year = c(2020, 2021) ) result <- ci(df) expect_s3_class(result, "data.frame") expect_true("query" %in% names(result)) expect_true("condition" %in% names(result)) expect_true("year" %in% names(result)) expect_true("totalResults" %in% names(result)) expect_true("total" %in% names(result)) # Check that original values are preserved expect_equal(result$query, c("test1", "test2")) expect_equal(result$condition, c("A", "B")) expect_equal(result$year, c(2020, 2021)) }) test_that("ci function handles empty data frame", { df <- data.frame( totalResults = numeric(0), total = numeric(0) ) result <- ci(df) expect_s3_class(result, "data.frame") expect_equal(nrow(result), 0) expect_true("f" %in% names(result)) expect_true("conf.low" %in% names(result)) expect_true("conf.high" %in% names(result)) }) test_that("ci function handles all zero totals", { df <- data.frame( totalResults = c(10, 20, 30), total = c(0, 0, 0) ) result <- ci(df) expect_s3_class(result, "data.frame") expect_equal(nrow(result), 3) # All rows should have NA values expect_true(all(is.na(result$f))) expect_true(all(is.na(result$conf.low))) expect_true(all(is.na(result$conf.high))) }) test_that("ci function validates confidence level parameter", { df <- data.frame( totalResults = c(100), total = c(1000) ) # Test invalid confidence levels expect_error(ci(df, conf.level = 1.1)) expect_error(ci(df, conf.level = 0)) expect_error(ci(df, conf.level = -0.1)) }) test_that("ci function handles tibble input", { if (requireNamespace("tibble", quietly = TRUE)) { df <- tibble::tibble( totalResults = c(100, 200), total = c(1000, 2000), query = c("test1", "test2") ) result <- ci(df) expect_s3_class(result, "tbl_df") expect_true("f" %in% names(result)) expect_true("conf.low" %in% names(result)) expect_true("conf.high" %in% names(result)) expect_equal(nrow(result), 2) } }) test_that("ci function confidence intervals are reasonable", { # Test with a known case df <- data.frame( totalResults = c(50), # 50 out of 100 = 50% total = c(100) ) result <- ci(df, conf.level = 0.95) expect_s3_class(result, "data.frame") expect_equal(result$f[1], 0.5, tolerance = 0.001) # For 50% with n=100, 95% CI should be roughly symmetric around 0.5 expect_true(result$conf.low[1] < 0.5) expect_true(result$conf.high[1] > 0.5) # CI should be reasonable width (not too narrow or too wide) ci_width <- result$conf.high[1] - result$conf.low[1] expect_true(ci_width > 0.05) # Not too narrow expect_true(ci_width < 0.5) # Not too wide }) test_that("ci function works with mixed valid and invalid data", { df <- data.frame( totalResults = c(100, 200, 50, 75), total = c(1000, 0, NA, 500), condition = c("A", "B", "C", "D") ) result <- ci(df) expect_s3_class(result, "data.frame") expect_equal(nrow(result), 4) # First and fourth rows should have valid values expect_false(is.na(result$f[1])) expect_false(is.na(result$f[4])) # Second and third rows should have NA values expect_true(is.na(result$f[2])) expect_true(is.na(result$f[3])) # Check that valid calculations are correct expect_equal(result$f[1], 0.1, tolerance = 0.001) expect_equal(result$f[4], 0.15, tolerance = 0.001) }) test_that("ci function preserves row order with mixed valid/invalid data", { # Test data with alternating valid and invalid rows df <- data.frame( totalResults = c(100, 0, 200, NA, 50), total = c(1000, 0, 2000, 1500, 500), query = c("first", "second", "third", "fourth", "fifth"), stringsAsFactors = FALSE ) result <- ci(df) # Check that the order is preserved expect_equal(result$query, c("first", "second", "third", "fourth", "fifth")) # Check that valid rows have computed values expect_false(is.na(result$f[1])) # first row should have valid f expect_false(is.na(result$f[3])) # third row should have valid f expect_false(is.na(result$f[5])) # fifth row should have valid f # Check that invalid rows have NA values expect_true(is.na(result$f[2])) # second row (total = 0) expect_true(is.na(result$f[4])) # fourth row (total = NA) expect_true(is.na(result$conf.low[2])) expect_true(is.na(result$conf.high[2])) expect_true(is.na(result$conf.low[4])) expect_true(is.na(result$conf.high[4])) })