R Under development (unstable) (2024-02-15 r85925 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > #source("moninit") > library("RCALI") > > # Cubature: > param <- list( output=1, input=2, dz=c(0,21), dp=c(100,0), tz=c(0,1)) > califlopp("data2",c(fpollen,fseed), param=param) Number of polygons: 2 ------------------- Parameters: ----------- verbose: 0 output: 1 scale: 10 maximal dispersion distances for each function: 0 21 minimal dispersion distances for each function: 100 0 (the dispersion is calculated between centroids, for distances beyond these values) method:cubature function 1: relative precision = 0.001, absolute precision = 0.001 maximal number of evaluations points fixed to 100000 function 2: relative precision = 0.001, absolute precision = 0.001 maximal number of evaluations points fixed to 100000 mode of triangulation: 0 1 all pairs of polygons Polygons 1 (p1), 1 (p1) ------------------- Integrated flow for function 1: mean: 1.00319e+06 mean/area1: 1.00319 mean/area2: 1.00319 absolute error: 989.725 relative error: 0.000986578 confidence interval: [1.0022e+06, 1.00418e+06] nb. evaluations: 12062 Integrated flow for function 2: mean: 999051 mean/area1: 0.999051 mean/area2: 0.999051 absolute error: 899.881 relative error: 0.000900736 confidence interval: [998151, 999951] nb. evaluations: 5180 area1: 1e+06 area2: 1e+06 Polygons 2 (p2), 1 (p1) ------------------- Integrated flow for function 1: mean: 501713 mean/area1: 1.00343 mean/area2: 0.501713 absolute error: 490.051 relative error: 0.000976755 confidence interval: [501223, 502203] nb. evaluations: 11137 Integrated flow for function 2: mean: 499526 mean/area1: 0.999051 mean/area2: 0.499526 absolute error: 449.771 relative error: 0.000900396 confidence interval: [499076, 499975] nb. evaluations: 5180 area1: 500000 area2: 1e+06 Polygons 2 (p2), 2 (p2) ------------------- Integrated flow for function 1: mean: 498957 mean/area1: 0.997915 mean/area2: 0.997915 absolute error: 487.731 relative error: 0.000977501 confidence interval: [498470, 499445] nb. evaluations: 14208 Integrated flow for function 2: mean: 499185 mean/area1: 0.998371 mean/area2: 0.998371 absolute error: 455.056 relative error: 0.000911598 confidence interval: [498730, 499640] nb. evaluations: 5180 area1: 500000 area2: 500000 > # Grid: > param <- list(method="grid", grid=list(step=c(50,50))) > califlopp("data2",dispf=c(3,1), param=param) Number of polygons: 2 ------------------- Parameters: ----------- verbose: 0 output: 1 scale: 10 maximal dispersion distances for each function: 0 0 minimal dispersion distances for each function: 0 100 (the dispersion is calculated between centroids, for distances beyond these values) method:grid seed: 1 x-axis step: 50 m. y-axis step: 50 m. number of estimations: 10 all pairs of polygons Polygons 1 (p1), 1 (p1) ------------------- Integrated flows at each replication: 1. Function 3: 1e+12 1. Function 1: 57580 2. Function 3: 1e+12 2. Function 1: 115247 3. Function 3: 1e+12 3. Function 1: 1.15439e+06 4. Function 3: 1e+12 4. Function 1: 102898 5. Function 3: 1e+12 5. Function 1: 124834 6. Function 3: 1e+12 6. Function 1: 58439.8 7. Function 3: 1e+12 7. Function 1: 52883.7 8. Function 3: 1e+12 8. Function 1: 45182.5 9. Function 3: 1e+12 9. Function 1: 59840.1 10. Function 3: 1e+12 10. Function 1: 48219.5 Nb. evaluations: 16000 Integrated flow for function 3: mean: 1e+12 mean/area1: 1e+06 mean/area2: 1e+06 standard deviation: 0.000565285 coefficient of variation (std/mean): 5.65285e-16 Integrated flow for function 1: mean: 181951 mean/area1: 0.181951 mean/area2: 0.181951 standard deviation: 342942 coefficient of variation (std/mean): 1.8848 area1: 1e+06 area2: 1e+06 Polygons 2 (p2), 1 (p1) ------------------- Integrated flows at each replication: 1. Function 3: 5e+11 1. Function 1: 28628.7 2. Function 3: 5e+11 2. Function 1: 58042.9 3. Function 3: 5e+11 3. Function 1: 580790 4. Function 3: 5e+11 4. Function 1: 50938.8 5. Function 3: 5e+11 5. Function 1: 62615 6. Function 3: 5e+11 6. Function 1: 29333 7. Function 3: 5e+11 7. Function 1: 26480.4 8. Function 3: 5e+11 8. Function 1: 22384 9. Function 3: 5e+11 9. Function 1: 29674.4 10. Function 3: 5e+11 10. Function 1: 24088.2 Nb. evaluations: 16000 Integrated flow for function 3: mean: 5e+11 mean/area1: 1e+06 mean/area2: 500000 standard deviation: 0.00383665 coefficient of variation (std/mean): 7.67329e-15 Integrated flow for function 1: mean: 91297.6 mean/area1: 0.182595 mean/area2: 0.0912976 standard deviation: 172624 coefficient of variation (std/mean): 1.89079 area1: 500000 area2: 1e+06 Polygons 2 (p2), 2 (p2) ------------------- Integrated flows at each replication: 1. Function 3: 2.50013e+11 1. Function 1: 26762.7 2. Function 3: 2.50086e+11 2. Function 1: 55456 3. Function 3: 2.50346e+11 3. Function 1: 571926 4. Function 3: 2.50096e+11 4. Function 1: 49174.2 5. Function 3: 2.50141e+11 5. Function 1: 60509.5 6. Function 3: 2.49957e+11 6. Function 1: 27252.6 7. Function 3: 2.49938e+11 7. Function 1: 24572.7 8. Function 3: 2.49792e+11 8. Function 1: 20629.3 9. Function 3: 2.4994e+11 9. Function 1: 27848 10. Function 3: 2.49886e+11 10. Function 1: 22192.3 Nb. evaluations: 16000 Integrated flow for function 3: mean: 2.50019e+11 mean/area1: 500039 mean/area2: 500039 standard deviation: 1.55721e+08 coefficient of variation (std/mean): 0.000622835 Integrated flow for function 1: mean: 88632.3 mean/area1: 0.177265 mean/area2: 0.177265 standard deviation: 170442 coefficient of variation (std/mean): 1.92302 area1: 500000 area2: 500000 > > proc.time() user system elapsed 0.68 0.15 0.82