## run the example from predict.gMAP source_example("predict_gMAP.R") ## check that we got for each input data item a prediction test_that("correct # of predictions are generated", { expect_equal(nrow(map$data), ncol(samp)) }) ## check that the predictive distribution has a variance which is ## larger in accordance to the betwee-trial heterogeniety (needs to be ## done on the link scale) test_that("variances have correct ordering", { pred_cov_link <- predict(map, type="link") within_var <- (summary(pred_cov_link)[,"sd"])^2 pred_cov_link_pred <- predict(map, trans_cov, type="link") pred_var_pred <- summary(pred_cov_link_pred)[,"sd"] tau_est <- summary(map)$tau[,"mean"] ## the predictive must include between and within; as such it is ## larger than within expect_true(all(pred_var_pred > tau_est)) ## ensure that predictive has larger variance than the model estimate expect_true(all(summary(pred_cov_link_pred)[,"sd"] > summary(pred_cov_link)[,"sd"])) }) ## new prediction was done for a single data item test_that("correct # of new predictions are generated", { expect_equal(ncol(pred_new), 1) } ) ## must have larger sd than between-trial alone (on link scale) test_that("predictive variances have correct ordering",{ pred_new_link <- predict(map, data.frame(country="CH", study=11), type="link") tau_est <- summary(map)$tau[,"mean"] expect_true(summary(pred_new_link)[,"sd"] > tau_est) }) ## whenever the same study/covariate combination is requested, then ## the MAP must be numerically exactly the same. This ensures that per ## study the random effect is sampled just once in each iteration. test_that("predictive distributions for the same study & covariate must match exactly", { trans_cov_new <- data.frame(study="new", n=50, r=0, country=levels(trans_cov$country)[c(1,1)]) post_trans <- as.matrix(predict(map, newdata=trans_cov_new)) expect_equal(post_trans[,1], post_trans[,2]) }) test_that("automixfit attempts K=4 different models and returns best fitting", { auto_map <- automixfit(map, Nc=1:4, k=6) models <- attr(auto_map, "models") expect_equal(length(models), 4) perf <- sapply(models, AIC, k=6) ## ensure that performance is decreasing expect_true(all(diff(perf) > 0)) expect_true("betaMix" %in% class(auto_map)) }) test_that("mixfit for prediction handles response and link scale", { pred_map <- mixfit(pred_new, Nc=2) expect_true(is.list(pred_map)) expect_true("betaMix" %in% class(pred_map[[1]])) expect_equal(ncol(pred_map[[1]]), 2) pred_new_link <- predict(map, data.frame(country="CH", study=11), type="link") pred_map_link <- mixfit(pred_new_link, Nc=2) expect_true(is.list(pred_map_link)) expect_true("normMix" %in% class(pred_map_link[[1]])) expect_equal(ncol(pred_map_link[[1]]), 2) }) source_example("mixcombine.R") test_that("combination of mixtures", { m1 <- mixcombine(bm, unif, weight=c(9, 1)) m2 <- mixcombine(bm, unif, unif, weight=c(8, 1, 1)) expect_equal(m1[1,], c(bm[1,] - 0.1/2, 0.1), ignore_attr=TRUE) expect_equal(m1[2:3,1:2], bm[2:3,1:2], ignore_attr=TRUE) expect_equal(m2[2:3,1:2], bm[2:3,1:2], ignore_attr=TRUE) }) test_that("throws an error if more weights than mixtures given", { ## giving 3 weights but only 2 mixtures must not work expect_error(mixcombine(bm, unif, weight=c(8, 1, 1)), "length(weight) not equal to length(comp)", fixed=TRUE) }) test_that("combination of normal mixtures without default sigma works", { norm_ui <- mixnorm(c(1, 0, 2)) norm_ui_mix <- mixcombine(norm_ui, norm_ui, weight=c(0.5,0.5)) expect_true(ncol(norm_ui_mix) == 2) }) source_example("robustify.R") test_that("beta mixture is robustified with Beta(1,1)", { expect_equal(ncol(bmix)+1, ncol(rbmix)) expect_equal(rbmix[,ncol(rbmix)], c(0.1, 1, 1), ignore_attr=TRUE) }) test_that("beta mixture is robustified with Beta(0.5,0.5)", { rbmix2 <- robustify(bmix, w=0.1, n=0, mean=0.5) expect_equal(ncol(bmix)+1, ncol(rbmix2)) expect_equal(rbmix2[,ncol(rbmix2)], c(0.1, 0.5, 0.5), ignore_attr=TRUE) }) test_that("gamma mixture is robustified with n=1 equivalent prior", { m <- summary(gmnMix)["mean"] nr <- ncol(rgmnMix) expect_equal(rgmnMix[[nr, rescale=TRUE]], mixgamma(c(1, m, 1), param="mn"), ignore_attr=TRUE) expect_equal(rgmnMix[1,nr], 0.1) }) test_that("gamma mixture is robustified with n=5 equivalent prior", { m <- summary(gmnMix)["mean"] rgmnMix2 <- robustify(gmnMix, w=0.1, n=5, mean=2) nr <- ncol(rgmnMix2) expect_equal(rgmnMix2[[nr, rescale=TRUE]], mixgamma(c(1, m, 5), param="mn"), ignore_attr=TRUE) expect_equal(rgmnMix2[1,nr], 0.1) }) test_that("normal mixture is robustified with n=1 equivalent prior", { nr <- ncol(rnMix) expect_equal(rnMix[[nr, rescale=TRUE]], mixnorm(c(1, 0, 1), param="mn", sigma=sigma(nm)), ignore_attr=TRUE) expect_equal(rnMix[1,nr], 0.1) }) test_that("normal mixture is robustified with n=5 equivalent prior", { rnMix2 <- robustify(nm, w=0.1, mean=0, n=5, sigma=sigma(nm)) nr <- ncol(rnMix2) expect_equal(rnMix2[[nr, rescale=TRUE]], mixnorm(c(1, 0, 5), param="mn", sigma=sigma(nm)), ignore_attr=TRUE) expect_equal(rnMix2[1,nr], 0.1) }) test_that("plotting of normal mixtures without default sigma works", { norm_ui <- mixnorm(c(1, 0, 2)) norm_mix_ui <- mixcombine(norm_ui, norm_ui, weight=c(0.5,0.5)) pl <- plot(norm_mix_ui) expect_true(inherits(pl, "ggplot")) }) source_example("ess.R") test_that("conjugate beta case matches canonical formula", { expect_equal(a+b, ess(prior, "moment")) expect_equal(a+b, round(ess(prior, "morita"))) expect_equal(a+b, ess(prior, "elir")) }) test_that("ess elir for beta mixtures gives a warning for a<1 & b<1 densities", { unconstrain1 <- mixbeta(c(0.95, 10, 5), c(0.05, 0.9, 2)) unconstrain2 <- mixbeta(c(0.95, 10, 5), c(0.05, 2, 0.9)) expect_error(ess(unconstrain1, "elir"), "At least one parameter of the beta mixtures is less than 1") expect_error(ess(unconstrain2, "elir"), "At least one parameter of the beta mixtures is less than 1") ## this one can trigger errors if the integration is not setup properly constrained <- mixbeta(c(0.48, 1, 11), c(0.34, 6.9, 173), c(0.18, 1.0, 1.13)) expect_numeric(ess(constrained, "elir"), lower=0, finite=TRUE, any.missing=FALSE, len=1) }) test_that("ess elir for normal mixtures returns correct values", { mix <- mixnorm( inf1=c(0.5026,-191.1869,127.4207),inf2=c(0.2647,-187.5895,31.6130),inf3=c(0.2326,-184.7445,345.3849), sigma=270.4877) expect_gt(ess(mix, sigma=270.4877), 0) }) test_that("moment matching for beta mixtures is correct", { expect_equal(ess(bmix, method="moment"), sum(ab_matched)) }) test_that("normal mixtures have reference scale used correctly", { nmix_sigma_small <- nmix sigma_large <- RBesT::sigma(nmix) sigma(nmix_sigma_small) <- sigma_large/sqrt(2) suppressMessages(e1m <- ess(nmix, "moment")) suppressMessages(e2m <- ess(nmix_sigma_small, "moment")) expect_gt(e1m, e2m) expect_equal(floor(abs(e2m - e1m/2)), 0) suppressMessages(e1b <- ess(nmix, "morita")) suppressMessages(e2b <- ess(nmix_sigma_small, "morita")) expect_gt(e1b, e2b) expect_equal(floor(abs(e2b - e1b/2)), 0) suppressMessages(e1r <- ess(nmix, "elir")) suppressMessages(e2r <- ess(nmix_sigma_small, "elir")) expect_gt(e1r, e2r) expect_equal(floor(abs(e2r - e1r/2)), 0) }) test_that("gamma mixtures have likelihood property respected", { gmix1 <- gmix likelihood(gmix1) <- "poisson" gmix2 <- gmix likelihood(gmix2) <- "exp" e1m <- ess(gmix1, "moment") e2m <- ess(gmix2, "moment") expect_true(e1m != e2m) e1b <- ess(gmix1, "morita") e2b <- ess(gmix2, "morita") expect_true(e1b != e2b) e1r <- ess(gmix1, "morita") e2r <- ess(gmix2, "morita") expect_true(e1r != e2r) }) test_that("gamma 1-component density gives canonical results", { guni1 <- gmix[[1, rescale=TRUE]] likelihood(guni1) <- "poisson" guni2 <- gmix[[1, rescale=TRUE]] likelihood(guni2) <- "exp" e1m <- ess(guni1, "moment") e2m <- ess(guni2, "moment") expect_true(e1m != e2m) expect_equal(guni1[3,1], e1m) expect_equal(guni2[2,1], e2m) e1b <- round(ess(guni1, "morita")) e2b <- round(ess(guni2, "morita")) expect_true(e1b != e2b) expect_equal(guni1[3,1], e1b) expect_equal(guni2[2,1], e2b) e1r <- ess(guni1, "elir") e2r <- ess(guni2, "elir") expect_true(e1r != e2r) expect_true(abs(guni1[3,1] - e1r) < 1E-4) ## ELIR gives a-1 as ESS expect_true(abs(guni2[2,1] - (e2r+1)) < 1E-4) }) ## check predictive consistency of ELIR elir_predictive_consistent <- function(dens, m, Nsim, seed, stat, ...) { ## simulated from predictve which is m events equivalent to suppressMessages(pdens <- preddist(dens, n=m)) set.seed(seed) psamp <- rmix(pdens, Nsim) if(inherits(dens, "gammaMix")) psamp <- psamp / m posterior_ess <- function(mix, method, stat, ...) { args <- c(list(priormix=mix, stat=0), list(...)) names(args)[2] <- stat fn <- function(x) { args[[stat]] <- x suppressMessages(res <- ess(do.call(postmix, args), method=method)) res } Vectorize(fn) } ## obtain ess of each posterior pred_ess <- posterior_ess(dens, "elir", stat, ...) ess_psamp <- pred_ess(psamp) suppressMessages(elir_prior <- ess(dens, "elir")) ## the average over the predicitve of the posterior ESS must match ## the the elir value taken directly (when m is subtracted, of ## course) elir_pred <- mean(ess_psamp) - m expect_true(abs(elir_prior - elir_pred) < 0.75) } test_that("ESS elir is predictively consistent for normal mixtures", { skip_on_cran() nmix <- mixnorm(rob=c(0.5, 0, 2), inf=c(0.5, 3, 4), sigma=10) elir_predictive_consistent(nmix, m=3E2, Nsim=1E3, seed=3435, stat="m", se=10/sqrt(3E2)) }) test_that("ESS elir is predictively consistent for beta mixtures", { skip_on_cran() bmix <- mixbeta(rob=c(0.2, 1, 1), inf=c(0.8, 10, 2)) elir_predictive_consistent(bmix, m=1E2, Nsim=1E3, seed=355435, stat="r", n=1E2) }) test_that("ESS elir is predictively consistent for gamma mixtures (Poisson likelihood)", { skip_on_cran() gmixP <- mixgamma(rob=c(0.3, 20, 4), inf=c(0.7, 50, 10), likelihood="poisson") elir_predictive_consistent(gmixP, m=1E2, Nsim=1E3, seed=355435, stat="m", n=1E2) }) test_that("ess elir for problematic beta mixtures gives correct result 1", { ## by user reported beta mixture density which triggers this erros ## with RBesT 1.7.2 & 1.7.3 (others not tested): ## Error in if (all(dgl < 0) || all(dgl > 0)) { : ## missing value where TRUE/FALSE needed mixmat <- matrix(c(0.06429517, 0.03301215, 0.00269268, 0.90000000, 437.32302999, 64.04211307, 5.92543558, 1.00000000, 10.71709277, 2.14157953, 1.00000001, 1.00000000), byrow=TRUE, ncol=4) mixb <- do.call(mixbeta, apply(mixmat,2,c,simplify=FALSE)) expect_double(ess(mixb), lower=0, finite=TRUE, any.missing=FALSE, len=1) }) test_that("ess elir for problematic beta mixtures gives correct result 2", { mixmat <- matrix(c(0.7237396, 0.1665037, 0.1097567, 53.3721902, 44.3894573, 9.8097062, 1.4301638, 4.3842200, 1.8492197 ), byrow=TRUE, ncol=3) mixb <- do.call(mixbeta, apply(mixmat,2,c,simplify=FALSE)) expect_double(ess(robustify(mixb, 0.05, 0.5)), lower=0, finite=TRUE, any.missing=FALSE, len=1) expect_double(ess(robustify(mixb, 0.95, 0.5)), lower=0, finite=TRUE, any.missing=FALSE, len=1) })