#context("EM: Expectation-Maximization") ## test that the EM algorithms recover reliably test distributions; ## test criterium is a "sufficiently" small KL divergence ## the test considers the uni-variate normal, beta & gamma case in ## three flavours each: ## - single-component ## - two component mixture with heavy tails ## - three component mixture with bi-modal density and heavy tails ## number of samples drawn from test distributions if (identical(Sys.getenv("NOT_CRAN"), "true")) { ## through testing if not on CRAN Nsim <- 1e4 verbose <- FALSE KLthresh <- 1e-2 } else { ## on CRAN we shortcut Nsim <- 1e3 verbose <- FALSE KLthresh <- 1e-1 } ## setup test cases ref <- list() ref$norm_single <- mixnorm(c(1, 1, 5), param="mn", sigma=1) ref$norm_heavy <- mixnorm(c(0.5, 0, 0.25), c(0.5, 1, 5), param="mn", sigma=1) ref$norm_bi <- mixnorm(c(0.5, 0, 0.5), c(0.25, 1, 5), c(0.25, -1, 2), param="mn", sigma=1) p <- 4 Rho <- diag(p) Rho[lower.tri(Rho)] <- c(0.3, 0.8, -0.2, 0.1, 0.5, -0.4) Rho[upper.tri(Rho)] <- t(Rho)[upper.tri(Rho)] s <- c(1, 2, 3, 4) S <- diag(s, p) %*% Rho %*% diag(s, p) zero <- rep(0, p) ref$mvnorm_single <- mixmvnorm(c(1, zero, 5), param="mn", sigma=S) ref$mvnorm_heavy <- mixmvnorm(c(0.5, zero, 0.25), c(0.5, zero + 1, 5), param="mn", sigma=S) ref$mvnorm_bi <- mixmvnorm(c(0.5, zero, 0.5), c(0.25, zero + 1, 5), c(0.25, zero - 1, 2), param="mn", sigma=S) ref$mvnorm_bi_1D <- mixmvnorm(c(0.5, 0, 0.5), c(0.25, 1, 5), c(0.25, -1, 2), param="mn", sigma=S[1,1,drop=FALSE]) ref$beta_single <- mixbeta(c(1, 0.3, 10), param="mn") ## density which is challenging for the constrained version of the ## beta EM (and leads to a large KLdiv) ref$beta_single_alt <- mixbeta(c(1, 0.2, 3)) ref$beta_heavy <- mixbeta(c(0.8, 0.3, 10), c(0.2, 0.5, 2.5), param="mn") ref$beta_bi <- mixbeta(c(0.3, 0.3, 20), c(0.2, 0.5, 2), c(0.5, 0.7, 10), param="mn") ref$gamma_single <- mixgamma(c(1, 7.5, 5), param="mn", likelihood="poisson") ref$gamma_heavy <- mixgamma(c(0.5, 7.5, 0.5), c(0.5, 5, 10), param="mn", likelihood="poisson") ref$gamma_bi <- mixgamma(c(0.5, 7.5, 1), c(0.25, 15, 15), c(0.25, 5, 10), param="mn", likelihood="poisson") EM_test <- function(mixTest, seed, Nsim=1e4, verbose=FALSE, ...) { set.seed(seed) samp <- rmix(mixTest, Nsim) set.seed(seed) EMmix1 <- mixfit(samp, type=switch(class(mixTest)[1], gammaMix="gamma", normMix="norm", betaMix="beta", mvnormMix="mvnorm"), thin=1, eps=2, Nc=ncol(mixTest), verbose=verbose, ...) kl1 <- abs(KLdivmix(mixTest, EMmix1)) expect_true(kl1 < KLthresh) ## results must not depend on the seed, but only on the order of ## the input sample set.seed(seed + 657858) EMmix2 <- mixfit(samp, type=switch(class(mixTest)[1], gammaMix="gamma", normMix="norm", betaMix="beta", mvnormMix="mvnorm"), thin=1, eps=2, Nc=ncol(mixTest), verbose=verbose, ...) expect_true(all(EMmix1 == EMmix2), info="Result of EM is independent of random seed.") } EM_mvn_test <- function(mixTest, seed, Nsim=1e4, verbose=FALSE, ...) { set.seed(seed) samp <- rmix(mixTest, Nsim) set.seed(seed) EMmix1 <- mixfit(samp, type="mvnorm", thin=1, eps=2, Nc=ncol(mixTest), verbose=verbose, ...) expect_equal(summary(mixTest)$mean, summary(EMmix1)$mean, tolerance=0.1) expect_equal(summary(mixTest)$cov, summary(EMmix1)$cov, tolerance=0.1) expect_equal(likelihood(EMmix1), likelihood(mixTest)) set.seed(seed + 476767) EMmix2 <- mixfit(samp, type="mvnorm", thin=1, eps=2, Nc=ncol(mixTest), verbose=verbose, ...) expect_true(all(EMmix1 == EMmix2), info="Result of EM is independent of random seed.") } test_that("Normal EM fits single component", { EM_test(ref$norm_single, 3453563, Nsim, verbose) }) test_that("Normal EM fits heavy-tailed mixture", { EM_test(ref$norm_heavy, 9275624, Nsim, verbose) }) test_that("Normal EM fits bi-modal mixture", { EM_test(ref$norm_bi, 9345726, Nsim, verbose) }) test_that("Multivariate Normal EM fits single component", { EM_mvn_test(ref$mvnorm_single, 3453563, max(1E4, Nsim), verbose) }) test_that("Multivariate Normal EM fits heavy-tailed mixture", { EM_mvn_test(ref$mvnorm_heavy, 9275624, max(1E4, Nsim), verbose) }) test_that("Multivariate Normal EM fits bi-modal mixture", { EM_mvn_test(ref$mvnorm_bi, 9345726, max(1E4, Nsim), verbose) }) test_that("Multivariate Normal EM fits bi-modal mixture 1D", { EM_mvn_test(ref$mvnorm_bi_1D, 9345726, max(1E4, Nsim), verbose) }) test_that("Gamma EM fits single component", { EM_test(ref$gamma_single, 9345835, Nsim, verbose) }) test_that("Gamma EM fits heavy-tailed mixture", { EM_test(ref$gamma_heavy, 5629389, Nsim, verbose) }) test_that("Gamma EM fits bi-modal mixture", { EM_test(ref$gamma_bi, 9373515, Nsim, verbose) }) test_that("Beta EM fits single component", { EM_test(ref$beta_single, 7265355, Nsim, verbose) }) test_that("Beta EM fits single component with mass at boundary", { EM_test(ref$beta_single_alt, 7265355, Nsim, verbose, constrain_gt1=FALSE) }) test_that("Beta EM fits heavy-tailed mixture", { EM_test(ref$beta_heavy, 2946562, Nsim, verbose) }) test_that("Beta EM fits bi-modal mixture", { EM_test(ref$beta_bi, 9460370, Nsim, verbose) }) test_that("Constrained Beta EM respects a>1 & b>1", { unconstrained <- mixbeta(c(0.6, 2.8, 64), c(0.25, 0.5, 0.92), c(0.15, 3, 15)) set.seed(45747) samp <- rmix(unconstrained, Nsim) constrained <- mixfit(samp, type="beta", Nc=3, constrain_gt1=TRUE) expect_numeric(constrained[2,], lower=1, any.missing=FALSE, len=3) expect_numeric(constrained[3,], lower=1, any.missing=FALSE, len=3) } )