# to obtain an example madelon dataset library(MDFS) mdfs_omp_set_num_threads(1) # only to pass CRAN checks data(madelon) data <- madelon$data decision <- madelon$decision # to get repeatable results set.seed(12345) # # Main flow starts below this comment. # library(RAFS) # using 2 CV loops (seeds) only to speed things up rafs_results <- run_rafs(data, decision, seeds = sample.int(32767, 2)) # finding representatives rafs_reps_popcnts <- get_rafs_reps_popcnts(rafs_results, n_clusters_range = 2:5) rafs_top_reps_5 <- get_rafs_top_reps_from_popcnts(rafs_reps_popcnts$stig_single, 5) rafs_all_reps_5 <- get_rafs_all_reps_from_popcnts(rafs_reps_popcnts$stig_single, 5) # findings representative tuples rafs_rep_tuples_popcnts <- get_rafs_rep_tuples_popcnts(rafs_results, n_clusters_range = 2:5) rafs_top_tuple_5 <- get_rafs_top_rep_tuples_from_popcnts(rafs_rep_tuples_popcnts$stig_single, 5) # learning more about the dataset structure # how many times did the representatives build together the tuple? (i.e., be in different clusters AND be representatives at the same time) rafs_rep_tuples_matrix <- get_rafs_rep_tuples_matrix(rafs_results, rafs_all_reps_5, n_clusters_range = 2:5) # how many times did the representatives share the same cluster? rafs_occurrence_matrix <- get_rafs_occurrence_matrix(rafs_results, rafs_all_reps_5, n_clusters_range = 2:5)