test_that('example analysis works',{ set.seed(123) df <- simulateData(n.entity = 100, n.obs = 50, mu = 0.3, r = 0.6) HLGM.results <- suppressMessages(calcHLGMRel(df = df, show.all = TRUE)) expect_equal(round(HLGM.results$marg.p, 3), 0.313) expect_equal(round(HLGM.results$var.b.HLGM.latent, 3), 0.136) expect_equal(round(mean(HLGM.results$est.HLGM.latent), 3), 0.671) expect_equal(round(mean(HLGM.results$est.HLGM.delta), 3), 0.59) expect_equal(round(mean(HLGM.results$est.HLGM.MC), 3), 0.587, tolerance = 0.01) expect_equal(round(mean(HLGM.results$est.HLGM.FE), 3), 0.604) expect_equal(round(mean(HLGM.results$est.HLGM.RE), 3), 0.593) df.x <- simulateData(n.entity = 100, n.obs = 50, mu = 0.3, r = 0.6, beta1 = log(1.5)) model = 'y ~ x1 + (1 | entity)' HLGM.x.results <- suppressMessages(calcHLGMRel(df = df.x, model = model, show.all = TRUE)) expect_equal(round(HLGM.x.results$marg.p, 3), 0.329) expect_equal(round(HLGM.x.results$var.b.HLGM.latent, 3), 0.148) expect_equal(round(mean(HLGM.x.results$est.HLGM.latent), 3), 0.684) expect_equal(round(mean(HLGM.x.results$est.HLGM.delta), 3), 0.604) expect_equal(round(mean(HLGM.x.results$est.HLGM.MC), 3), 0.599, tolerance = 0.01) expect_equal(round(mean(HLGM.x.results$est.HLGM.FE), 3), 0.611) expect_equal(round(mean(HLGM.x.results$est.HLGM.RE), 3), 0.601) })