#' #' Test for kb.test #' #' #' #' @srrstats {G5.1, G5.5} data sets are generated using simple functions with #' fixed seed #' @srrstats {G5.2,G5.2a,G5.2b} all the error and warning messages are tested #' @srrstats {G5.4,G5.4a} correctness tested on simple cases #' @srrstats {G5.8, G5.8a,G5.8b,G5.8c} edge conditions #' #' @noRd library(testthat) ## "Tests for kb.test function" # Test 1: Verify Error on Invalid Method Input test_that("Error on invalid method input", { set.seed(123) expect_error(kb.test(x = matrix(rnorm(100), ncol = 2), h=0.5, method = "invalid_method"), "method must be one of 'bootstrap', 'permutation' or 'subsampling'", fixed=TRUE) }) # Test 2: Verify Error on Invalid b Input test_that("Error on invalid b input", { set.seed(123) expect_error(kb.test(x = matrix(rnorm(100), ncol = 2), h=0.5, b = 10), "b indicates the proportion used for the subsamples in the subsampling algoritm. It must be in (0,1].", fixed=TRUE) }) # Test 3: Error on Invalid alternative Input test_that("Error on invalid alternative input", { set.seed(123) expect_error(kb.test(x = matrix(rnorm(100), ncol= 2), y = matrix(rnorm(100), ncol= 2), h=0.5, alternative = "invalid"), "The algorithm for selecting the value of h can be performed with respect to the following families of alternatives: 'location', 'scale' or 'skewness'", fixed=TRUE) }) # Test 4: Error on Invalid centeringType Input test_that("Error on invalid centeringType input", { set.seed(123) expect_error(kb.test(x = matrix(rnorm(100), ncol= 2), y = matrix(rnorm(100), ncol= 2), h=0.5, centeringType = "invalid"), "centering must be chosen between 'Param' and 'Nonparam'", fixed=TRUE) }) # Test 5: Correct handling of vector x input test_that("Handle vector x input correctly", { set.seed(123) # x is a vector result <- kb.test(x = rnorm(10), h=0.5) expect_s4_class(result, "kb.test") expect_equal(result@method, "Kernel-based quadratic distance Normality test") # x is a data.frame result <- kb.test(x = data.frame(matrix(rnorm(20),ncol=2)), h=0.5) expect_s4_class(result, "kb.test") # x is a matrix result <- kb.test(x = matrix(rnorm(20),ncol=2), h=0.5) expect_s4_class(result, "kb.test") # test summary method s <- summary(result) expect_true("matrix" %in% class(s$summary_tables)) expect_equal(nrow(s$test_results), 2) # x is not numeric expect_error(kb.test(x = "invalid", h=0.5), "x must be numeric", fixed=TRUE) # x is not matrix or data.frame expect_error(kb.test(x = list(rnorm(10),rnorm(10)), h=0.5), "x must be numeric", fixed=TRUE) }) # Test 6: Testing main functionality: two-sample test test_that("Functionality with valid inputs", { set.seed(123) dat <- generate_SN(d = 2, 100, 100, c(0,0),c(0,0), 1, 1, 0) x <- dat$X y <- dat$Y result <- kb.test(x=x, y=y, h=0.5, method = "subsampling", b = 0.5) expect_s4_class(result, "kb.test") expect_equal(result@method, "Kernel-based quadratic distance two-sample test") expect_true(is.numeric(result@Un)) expect_false(result@H0_Un[1]) expect_false(result@H0_Un[2]) # test summary method s <- summary(result) expect_type(s$summary_tables, "list") expect_equal(nrow(s$test_results), 2) # Test parametric centering result <- kb.test(x, y, h=0.5, method = "bootstrap", centeringType = "Param") expect_s4_class(result, "kb.test") expect_equal(result@method,"Kernel-based quadratic distance two-sample test") ## Test all the methods for the CV computation result <- kb.test(x, y, h=0.5, method = "bootstrap") expect_s4_class(result, "kb.test") result <- kb.test(x, y, h=0.5, method = "permutation") expect_s4_class(result, "kb.test") # Test if y is a data.frame y <- data.frame(matrix(rnorm(200), ncol = 2)) result <- kb.test(x, y, h=0.5, method = "subsampling", b = 0.5) expect_s4_class(result, "kb.test") # Test additional errors y <- matrix(rnorm(90), ncol = 3) expect_error(kb.test(x, y, h=0.5), "'x' and 'y' must have the same number of columns.", fixed=TRUE) }) # Test 7: Testing main functionality: k-sample test test_that("Functionality with valid inputs", { set.seed(123) x <- matrix(rnorm(100), ncol = 2) y <- rep(c(1,2), each=25) result <- kb.test(x, y, h=0.5, method = "subsampling", b = 0.5) expect_s4_class(result, "kb.test") expect_equal(result@method, "Kernel-based quadratic distance k-sample test") expect_true(is.numeric(result@Un)) expect_false(result@H0_Un[1]) expect_false(result@H0_Un[2]) # test show method output <- capture.output(show(result)) expect_true(any(grepl("H0 is rejected: ", output))) expect_true(any(grepl("Test Statistic: ", output))) # test summary method s <- summary(result) expect_type(s$summary_tables, "list") expect_equal(nrow(s$test_results), 2) # Test all the methods for computing the CV result <- kb.test(x, y, h=0.5, method = "bootstrap") expect_s4_class(result, "kb.test") result <- kb.test(x, y, h=0.5, method = "permutation") expect_s4_class(result, "kb.test") # Test additional errors y <- rep(c(1,2), each=20) expect_error(kb.test(x, y, h=0.5), "'x' and 'y' must have the same number of rows.", fixed=TRUE) }) # Test 8: Testing selection of h test_that("Selection of h from kb.test", { set.seed(123) x <- matrix(rnorm(100), ncol = 2) y <- rep(c(1,2), each=25) result <- kb.test(x, method = "subsampling", mu_hat = c(0,0), Sigma_hat = diag(2), b = 0.5) expect_s4_class(result, "kb.test") expect_equal(result@method, "Kernel-based quadratic distance Normality test") expect_equal(class(result@h$h_sel), "numeric") result <- kb.test(x, y, method = "subsampling", b = 0.5) expect_s4_class(result, "kb.test") expect_equal(class(result@h$h_sel), "numeric") })