test_that("Model Workflow Regression KL", { set.seed(1234) dist.meas = 1 ## Fatty Acids data(FAset) fa.set = as.vector(unlist(FAset)) ## Predators data(predatorFAs) tombstone.info = predatorFAs[,1:4] predator.matrix = predatorFAs[,5:(ncol(predatorFAs))] npredators = nrow(predator.matrix) ## Prey data(preyFAs) prey.sub=(preyFAs[,4:(ncol(preyFAs))])[fa.set] prey.sub=prey.sub/apply(prey.sub,1,sum) group=as.vector(preyFAs$Species) prey.matrix=cbind(group,prey.sub) prey.matrix=MEANmeth(prey.matrix) FC = preyFAs[,c(2,3)] FC = as.vector(tapply(FC$lipid,FC$Species,mean,na.rm=TRUE)) ## Calibration Coefficients data(CC) cal.vec = CC[,2] cal.mat = replicate(npredators, cal.vec) # Run QFASA Q = p.QFASA(predator.matrix, prey.matrix, cal.mat, dist.meas, gamma=1, FC, start.val = rep(1,nrow(prey.matrix)), fa.set) # Diet Estimates DietEst = Q$'Diet Estimates' DietEst = round(DietEst*100,digits=2) colnames(DietEst) = (as.vector(rownames(prey.matrix))) DietEst = cbind(tombstone.info,DietEst) # Check diet estimates DietEstCheck = read.csv(file=system.file("exdata", "DietEstKL.csv", package="QFASA"), as.is=TRUE) expect_equal(DietEst, DietEstCheck, tolerance=1e-6) # Additional Measures AdditionalMeasures = plyr::ldply(Q$'Additional Measures', data.frame) # Check additional measures AdditionalMeasuresCheck = read.csv(file=system.file("exdata", "AdditionalMeasuresKL.csv", package="QFASA"), as.is=TRUE) expect_equal(AdditionalMeasures, AdditionalMeasuresCheck, tolerance=1e-4) })