library(testthat) library(Publish) library(mitools) library(smcfcs) library(riskRegression) test_that("multiple imputation",{ set.seed(71) d=sampleData(100) ## generate missing values d[X1==1,X6:=NA] d[X2==1,X3:=NA] d=d[,.(X8,X4,X3,X6,X7)] sapply(d,function(x)sum(is.na(x))) d[,X4:=factor(X4,levels=c("0","1"),labels=c("0","1"))] set.seed(17) f= smcfcs(d,smtype="lm",smformula=X8~X4*X3+X6+X7,method=c("","","logreg","norm",""),m=3) ccfit=lm(X8~X4*X3+X6+X7,data=d) impobj <- imputationList(f$impDatasets) models <- with(impobj,lm(X8~X4*X3+X6+X7)) mifit <- MIcombine(models) a <- publish(mifit,fit=ccfit,data=d) })