context("Model Predictions") test_that("model_prediction works", { source("examples_fcn_doc/examples_model_prediction.R") expect_equal(length(unique(df_2$ID)),32) expect_null(df_3$DV) expect_null(df_4$a_i) expect_equal(length(unique(df_5$Group)),2) expect_equal(length(unique(df_5$a_i)),2) expect_equal(length(unique(df_5$ID)),6) expect_equal(length(unique(df_6$Group)),2) expect_true(all(is.na(df_6$PRED))) expect_true(all(c("WT","AGE") %in% names(df_7))) expect_equal(length(unique(df_8$WT)),2) expect_equal(length(unique(df_8$AGE)),2) expect_equal(length(unique(df_9$WT)),2) expect_equal(length(unique(df_9$AGE)),2) expect_equal(length(unique(df_9$ID)),6) expect_equal(length(unique(df_10$WT)),6) expect_equal(length(unique(df_11$AGE)),6) expect_equal(length(unique(df_12$AMT)),3) expect_equal(length(unique(df_13$AMT)),2) expect_equal(length(unique(df_15$AMT[df_15$ID==1])),3) df_16 <- model_prediction(design=design_3,DV=TRUE,dosing=dosing_4,filename="test.csv") expect_true("test.csv" %in% list.files()) unlink("test.csv") dosing_2 <- list(list(AMT=1000,RATE=NA,Time=0.5),list(AMT=3000,RATE=NA,Time=0.5),list(AMT=6000,RATE=NA,Time=0.5)) expect_error(model_prediction(design=design_3,DV=T,dosing=dosing_2)) sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db.2 <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=1), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) plot_model_prediction(poped.db.2,PI=T,DV=T)#,groupsize_sim = 500) df_20 <- model_prediction(poped.db.2,PI=TRUE) expect_true(all(c("PI_l","PI_u") %in% names(df_20))) sfg.3 <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU=a[2]) return(parameters) } poped.db.3 <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg.3, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=1), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=c(DOSE=70,TAU=200)) plot_model_prediction(poped.db.3,PI=T,DV=T)#,groupsize_sim = 500) }) test_that("plot_model_prediction works", { source("examples_fcn_doc/examples_plot_model_prediction.R") expect_output(str(plot_model_prediction(poped.db))) })