test_that('startMarks is able to initialize a specifyMarks object as well as correctly add the data to the integrated model', { skip_on_cran() ##Set up arbitrary data projection <- '+proj=tmerc' #Make random shape to generate points on x <- c(16.48438, 17.49512, 24.74609, 22.59277, 16.48438) y <- c(59.736328125, 55.1220703125, 55.0341796875, 61.142578125, 59.736328125) xy <- cbind(x, y) SpatialPoly <- st_sfc(st_polygon(list(xy)), crs = projection) ##Old coordinate names #Make random points #Random presence only dataset PO <- st_as_sf(st_sample(SpatialPoly, 100, crs = projection)) st_geometry(PO) <- 'geometry' ##Add random variable PO$numvar <- runif(n = nrow(PO)) PO$factvar <- sample(x = c('a','b'), size = nrow(PO), replace = TRUE) PO$species <- sample(x = c('fish'), size = nrow(PO), replace = TRUE) #Random presence absence dataset PA <- st_as_sf(st_sample(SpatialPoly, 100, crs = projection)) st_geometry(PA) <- 'geometry' PA$PAresp <- sample(x = c(0,1), size = nrow(PA), replace = TRUE) #Add trial name PA$trial <- sample(x = c(1,2,3), size = nrow(PA), replace = TRUE) PA$pointcov <- runif(n = nrow(PA)) PA$binommark <- sample(x = 2:5, size = nrow(PA), replace = TRUE) PA$marktrial <- sample(x = 0:1, size = nrow(PA), replace = TRUE) PA$species <- sample(x = c('bird'), nrow(PA), replace = TRUE) mesh <- INLA::inla.mesh.2d(boundary = INLA::inla.sp2segment(SpatialPoly), max.edge = 2, crs = inlabru::fm_crs(projection)) #iPoints <- inlabru::ipoints(samplers = SpatialPoly, domain = mesh) iPoints <- inlabru::fm_int(samplers = SpatialPoly, domain = mesh) coordnames <- c('long', 'lat') responseCounts <- 'count' responsePA <- 'PAresp' trialName <- 'trial' markNames <- c('numvar', 'factvar', 'binommark') marksFamily <- c('gaussian', 'multinomial', 'binomial') markTrial = 'marktrial' pointCovs <- 'pointcov' cov <- terra::rast(st_as_sf(SpatialPoly), crs = projection) terra::values(cov) <- rgamma(n = terra::ncell(cov), shape = 2) names(cov) <- 'covariate' cov$cov2 <- rgamma(n = terra::ncell(cov), shape = 2) expect_error(startMarks(PO, PA, Projection = projection, Mesh = mesh, IPS = iPoints, trialsPA = trialName, responseCounts = responseCounts, responsePA = responsePA, spatialCovariates = NULL), 'markNames needs to be non-null.') expect_warning(startMarks(PO, PA, Projection = projection, Mesh = mesh, markNames = markNames, IPS = iPoints, trialsPA = trialName, responseCounts = responseCounts, responsePA = responsePA, spatialCovariates = NULL), 'Mark families not given. Will assume marks as gaussian.') obj <- startMarks(PO, PA, Projection = projection, Mesh = mesh, markNames = markNames, markFamily = marksFamily, IPS = iPoints, trialsPA = trialName, responseCounts = responseCounts, responsePA = responsePA, spatialCovariates = NULL) #Test that object is created expect_true(all(class(obj) == c('specifyMarks', 'R6'))) expect_setequal(names(obj$.__enclos_env__$private$modelData), c("PO", "PA")) expect_setequal(unlist(obj$.__enclos_env__$private$Family), c("cp", "gaussian", "poisson", "binomial", "binomial")) expect_identical(iPoints, expected = obj$.__enclos_env__$private$IPS) ##Test object can be created from a list of data obj2 <- startMarks(list(PO, PA), Projection = projection, Mesh = mesh, markNames = markNames, markFamily = marksFamily, IPS = iPoints, trialsPA = trialName, responseCounts = responseCounts, responsePA = responsePA, spatialCovariates = NULL) expect_setequal(names(obj2$.__enclos_env__$private$modelData), c("PO", "PA")) ##Test error: data not sf PA2 <- as.data.frame(PA) expect_error(startMarks(PO, PA2, Projection = projection, Mesh = mesh, markNames = markNames, markFamily = marksFamily, IPS = iPoints, trialsPA = trialName, responseCounts = responseCounts, responsePA = responsePA, spatialCovariates = NULL),'Datasets need to be sf objects.') ##Test error: pointsSpatial expect_error(startMarks(PO, PA2, Projection = projection, Mesh = mesh, markNames = markNames, markFamily = marksFamily, IPS = iPoints, trialsPA = trialName, responseCounts = responseCounts, responsePA = responsePA, spatialCovariates = NULL, pointsSpatial = FALSE),'PointsSpatial needs to be one of: "shared", "copy", "individual", "correlate" or NULL.') expect_error(startMarks(PO, PA2, Projection = projection, Mesh = mesh, IPS = iPoints, trialsPA = trialName, responseCounts = responseCounts, responsePA = responsePA, spatialCovariates = NULL, pointsSpatial = c('shared', 'copy')),'PointsSpatial needs to be one of: "shared", "copy", "individual", "correlate" or NULL.') ##Test error: INLAmesh not an inla.mesh object expect_error(startMarks(PO, PA, Projection = projection, Mesh = list(), markNames = markNames, markFamily = marksFamily, IPS = iPoints, trialsPA = trialName, responseCounts = responseCounts, responsePA = responsePA, spatialCovariates = NULL), 'Mesh needs to be a inla.mesh object.') #Try with cov objCov <- startMarks(PO, PA, Projection = projection, Mesh = mesh, markNames = markNames, markFamily = marksFamily, IPS = iPoints, trialsPA = trialName, responseCounts = responseCounts, responsePA = responsePA, spatialCovariates = cov) expect_setequal(objCov$.__enclos_env__$private$spatcovsNames, c('covariate', 'cov2')) expect_setequal(objCov$.__enclos_env__$private$spatcovsClass, c('linear', 'linear')) #Try own formula objForm <- startMarks(PO, PA, Projection = projection, Mesh = mesh, markNames = markNames, markFamily = marksFamily, IPS = iPoints, trialsPA = trialName, responseCounts = responseCounts, responsePA = responsePA, spatialCovariates = cov, Formulas = list(covariateFormula = ~ covariate + I(covariate^2), biasFormula = ~ cov2)) expect_equal(deparse1(objForm$.__enclos_env__$private$covariateFormula), "~covariate + I(covariate^2)") expect_equal(deparse1(objForm$.__enclos_env__$private$biasFormula), "~cov2") ##Expect output expect_output(obj$print(), 'Summary of specifyMarks data file:') expect_output(obj$print(), 'Summary of presence absence datasets') expect_output(obj$print(), 'Summary of presence only datasets:') expect_output(obj$print(), 'Marks included:') })