##Load in the necessary data Check <- dataOrganize$new() projection <- '+proj=tmerc' #Make random shape to generate points on x <- c(16.48438, 17.49512, 24.74609, 22.59277, 16.48438) y <- c(59.736328125, 55.1220703125, 55.0341796875, 61.142578125, 59.736328125) xy <- cbind(x, y) SpatialPoly <- st_sfc(st_polygon(list(xy)), crs = projection) ##Old coordinate names #Make random points #Random presence only dataset PO <- st_as_sf(st_sample(SpatialPoly, 100, crs = projection)) st_geometry(PO) <- 'geometry' ##Add random variable PO$numvar <- runif(n = nrow(PO)) PO$factvar <- sample(x = c('a','b'), size = nrow(PO), replace = TRUE) PO$species <- sample(x = c('fish1', 'fish2'), size = nrow(PO), replace = TRUE) PO$temp <- sample(x = c(1,2), nrow(PO), replace = TRUE) #Random presence absence dataset PA <- st_as_sf(st_sample(SpatialPoly, 100, crs = projection)) st_geometry(PA) <- 'geometry' PA$PAresp <- sample(x = c(0,1), size = nrow(PA), replace = TRUE) #Add trial name PA$trial <- sample(x = c(1,2,3), size = nrow(PA), replace = TRUE) PA$pointcov <- runif(n = nrow(PA)) PA$binommark <- sample(x = 0:1, size = nrow(PA), replace = TRUE) PA$marktrial <- sample(x = 2:5, size = nrow(PA), replace = TRUE) PA$species <- sample(x = c('bird1', 'bird2'), nrow(PA), replace = TRUE) PA$temp <- sample(x = c(1,2), nrow(PA), replace = TRUE) mesh <- INLA::inla.mesh.2d(boundary = INLA::inla.sp2segment(SpatialPoly), max.edge = 2, crs = inlabru::fm_crs(projection)) #iPoints <- inlabru::ipoints(samplers = SpatialPoly, domain = mesh) iPoints <- inlabru::fm_int(samplers = SpatialPoly, domain = mesh) ##Make PA a data.frame object PA$long <- st_coordinates(PA)[,1] PA$lat <- st_coordinates(PA)[,2] st_geometry(PA) <- NULL PA <- data.frame(PA) spData <- list(PO, PA) test_that('The internal function makeData returns a list of SpatialPointDataFrame objects as well as the relevant metadata to be used in the integrated model.', { Check$makeData(datapoints = spData, datanames = c('PO', 'PA'), coords = c('long', 'lat'), proj = projection, offsetname = NULL, pointcovnames = 'pointcov', paresp = 'PAresp', countsresp = 'counts', trialname = 'trial', speciesname = 'species', marks = c('numvar', 'factvar', 'binommark'), temporalvar = 'temp', marktrialname = 'marktrial', markfamily = c('uniform', 'multinomial', 'binomial')) expect_setequal(names(Check$Data), c('PO','PA')) expect_true(all(unlist(sapply(unlist(Check$Data, recursive = FALSE), function(x) inherits(x, 'sf'))))) ##Should create a placeholder variable for the poresp + #should keep marks + #should create new variables for the multinomial marks. expect_setequal(names(Check$Data$PO[[1]]), c("poresp", "numvar", "factvar", 'temp', 'geometry', "species", "factvar_phi", "factvar_response", 'speciesINDEX_VAR')) expect_true((all(Check$Data$PO[[1]]$factvar_phi == 1))) expect_true((all(Check$Data$PO[[1]]$factvar_response == 1))) expect_true(class(Check$Data$PO[[1]]$factvar) == 'character') expect_setequal(names(Check$Data$PA[[1]]), c("PAresp", "trial", "binommark", 'temp', 'geometry', "marktrial", "species", "pointcov", 'speciesINDEX_VAR')) #Family for PO should be: # cp for the points; # uniform for the mark; # poisson for the multinomial mark. expect_setequal(Check$Family$PO, c('cp', 'uniform', 'poisson')) expect_setequal(Check$Family$PA, c('binomial', 'binomial')) expect_named(Check$dataType, c('PO', 'PA')) expect_setequal(Check$dataType, c('Present only', 'Present absence')) ##PO has no point covariates; ##PA has pointcov as a pointcovariate expect_true(is.null(unlist(Check$varsIn$PO))) expect_true(unlist(Check$varsIn$PA) == 'pointcov') expect_setequal(Check$Marks$PO, c('numvar', 'factvar')) expect_setequal(Check$Marks$PA, c('binommark')) expect_named(Check$marksType$PO, c('numvar', 'factvar')) expect_named(Check$marksType$PA, c('binommark')) expect_setequal(Check$marksType$PO, c('Uniform mark', 'Multinomial mark')) expect_setequal(Check$marksType$PA, c('Binomial mark')) expect_true('factvar' %in% Check$multinomVars) expect_true(Check$numObs[1] == nrow(PO)) expect_true(Check$numObs[2] == nrow(PA)) #Ie there are three processes in PO: the points + 2 marks expect_length(Check$dataSource[[1]], 3) #Ie there are two processes in PO: the points + 21marks expect_length(Check$dataSource[[2]],2) #Remove a dataset name expect_error(Check$makeData(datapoints = spData, datanames = c('PO'), coords = colnames(PO@coords), proj = projection, pointcovnames = 'pointcov', paresp = 'PAresp', countsresp = 'counts', trialname = 'trial', speciesname = 'species', marks = c('numvar', 'factvar', 'binommark'), marktrialname = 'marktrial', markfamily = c('uniform', 'multinomial', 'binomial')), 'Number of dataset names needs to equal length of datasets.') #Remove a mark family expect_error(Check$makeData(datapoints = spData, datanames = c('PO','PA'), coords = colnames(PO@coords), proj = projection, pointcovnames = 'pointcov', paresp = 'PAresp', countsresp = 'counts', trialname = 'trial', speciesname = 'species', marks = c('numvar', 'factvar', 'binommark'), marktrialname = 'marktrial', markfamily = c('uniform', 'multinomial')), "Number of marks needs to equal the number of mark families.") }) test_that('makeSpecies is able to split the data up by species.', { Check$makeSpecies(speciesname = 'species') expect_setequal(names(Check$Data$PO), c('PO_fish1', 'PO_fish2')) expect_setequal(names(Check$Data$PA), c('PA_bird1', 'PA_bird2')) expect_setequal(Check$SpeciesInData$PO, c('fish1', 'fish2')) expect_setequal(Check$SpeciesInData$PA, c('bird1', 'bird2')) #When converting factors to numeric, we expect them to be ordered alphabetically ## So bird1 and bird2 should get 1 and 2; fish1 and fish2 should get 3 and 4 expect_true(all(unlist(Check$speciesNumeric$species$PO)%in%c(3,4))) expect_true(all(unlist(Check$speciesNumeric$species$PA)%in%c(1,2))) #ie multiply the length of process by #species = 2 expect_length(Check$dataSource[[1]], 3 * 2) expect_length(Check$dataSource[[2]], 2 * 2) }) test_that('makeMultinom is able to organize and create usable multinomial data for INLA', { #This function was implicitly checked with makeSpecies? Check$makeMultinom(multinomVars = Check$multinomVars, return = 'marks', oldVars = NULL) expect_setequal(unlist(Check$multinomIndex$factvar$PO),c('a','b')) #No factor var present in PA, so should expect NA expect_true(all(is.na(unlist(Check$multinomIndex$factvar$PA)))) expect_true(all(as.numeric(factor(unlist(Check$multinomIndex$factvar$PO))) == unlist(Check$multinomNumeric$factvar$PO))) #The factor variable should now be numeric in the data; the index is stored in multinoIndex expect_true(all(sapply(Check$Data$PO, function(x) class(x$factvar) == 'numeric'))) }) test_that('makeFormulas is able to make the correct formulas for the different processes based on their response variables, and the available covariates.', { #Spatcovs is the names of the spatial covariates #specnesname is the name of the species variable Check$makeFormulas(spatcovs = 'spatcovs', speciesname = 'species', markintercept = TRUE, speciesintercept = FALSE, speciesenvironment = TRUE, paresp = 'PAresp', countresp = 'counts', marksspatial = TRUE, speciesspatial = 'individual', marks = c('numvar', 'factvar', 'binommark'), temporalname = 'temp', speciesindependent = FALSE, spatial = 'shared', intercept = TRUE, pointcovs = 'pointcov') expect_setequal(names(Check$Formulas), c('PO', 'PA')) expect_setequal(names(Check$Formulas$PO), c('fish1','fish2')) expect_setequal(names(Check$Formulas$PA), c('bird1','bird2')) expect_setequal(names(Check$Formulas$PO$fish1), c('geometry', 'numvar', 'factvar_response')) expect_setequal(names(Check$Formulas$PO$fish2), c('geometry', 'numvar', 'factvar_response')) expect_setequal(names(Check$Formulas$PA$bird1), c('PAresp', 'binommark')) expect_setequal(names(Check$Formulas$PA$bird2), c('PAresp', 'binommark')) expect_equal(deparse1(Check$Formulas$PO$fish1$geometry$LHS), 'geometry ~ .') expect_equal(deparse1(Check$Formulas$PO$fish1$numvar$LHS), 'numvar ~ .') expect_equal(deparse1(Check$Formulas$PO$fish1$factvar_response$LHS), 'factvar_response ~ .') expect_equal(deparse1(Check$Formulas$PA$bird1$PAresp$LHS), 'PAresp ~ .') expect_equal(deparse1(Check$Formulas$PA$bird1$binommark$LHS), 'binommark ~ .') expect_setequal(Check$Formulas$PO$fish1$geometry$RHS, c("fish1_spatcovs", "fish1_PO_spatial", "shared_spatial", "fish1_intercept")) expect_setequal(Check$Formulas$PO$fish1$numvar$RHS, c("fish1_spatcovs", "numvar_intercept", "numvar_spatial")) expect_setequal(Check$Formulas$PO$fish1$factvar_response$RHS, c("fish1_spatcovs", "factvar_spatial", "factvar", "factvar_phi")) expect_setequal(Check$Formulas$PA$bird1$PAresp$RHS, c("bird1_spatcovs", "bird1_PA_spatial", "shared_spatial", "bird1_intercept", "pointcov")) expect_setequal(Check$Formulas$PA$bird2$binommark$RHS, c("bird2_spatcovs", "binommark_spatial", "binommark_intercept")) ##Change terms #Set spatial and intercept to FALSE Check$makeFormulas(spatcovs = 'spatcovs', speciesname = 'species', temporalname = 'temp', speciesintercept = NULL, speciesenvironment = TRUE, paresp = 'PAresp', countresp = 'counts', marksspatial = FALSE, speciesspatial = NULL, marks = c('numvar', 'factvar', 'binommark'), markintercept = FALSE, speciesindependent = FALSE, spatial = NULL, intercept = FALSE, pointcovs = 'pointcov') expect_setequal(Check$Formulas$PO$fish1$geometry$RHS, c("fish1_spatcovs")) expect_setequal(Check$Formulas$PO$fish1$numvar$RHS, c("fish1_spatcovs")) expect_setequal(Check$Formulas$PO$fish1$factvar_response$RHS, c("fish1_spatcovs", "factvar", "factvar_phi")) expect_setequal(Check$Formulas$PA$bird1$PAresp$RHS, c("bird1_spatcovs", "pointcov")) expect_setequal(Check$Formulas$PA$bird2$binommark$RHS, c("bird2_spatcovs")) ##Change terms #Set spatcovs to NULL Check$makeFormulas(spatcovs = NULL, speciesname = 'species', marksspatial = TRUE, speciesspatial = 'individual', paresp = 'PAresp', countresp = 'counts', markintercept = FALSE, speciesindependent = FALSE, marks = c('numvar', 'factvar', 'binommark'), temporalname = 'temp', speciesintercept = FALSE, speciesenvironment = FALSE, spatial = 'shared', intercept = TRUE, pointcovs = 'pointcov') expect_setequal(Check$Formulas$PO$fish1$geometry$RHS, c("fish1_PO_spatial", "shared_spatial", "fish1_intercept")) expect_setequal(Check$Formulas$PO$fish1$numvar$RHS, c("numvar_spatial")) expect_setequal(Check$Formulas$PO$fish1$factvar_response$RHS, c("factvar_spatial", "factvar", "factvar_phi")) expect_setequal(Check$Formulas$PA$bird1$PAresp$RHS, c("bird1_PA_spatial", "shared_spatial", "bird1_intercept", "pointcov")) expect_setequal(Check$Formulas$PA$bird2$binommark$RHS, c("binommark_spatial")) ##Try copy model Check$makeFormulas(spatcovs = NULL, speciesname = 'species', marksspatial = TRUE, speciesspatial = 'individual', paresp = 'PAresp', countresp = 'counts', markintercept = FALSE, speciesindependent = FALSE, marks = c('numvar', 'factvar', 'binommark'), temporalname = 'temp', speciesintercept = FALSE, speciesenvironment = TRUE, spatial = 'copy', intercept = TRUE, pointcovs = 'pointcov') expect_setequal(Check$Formulas$PO$fish2$geometry$RHS, c('PO_spatial',"fish2_PO_spatial", "fish2_intercept")) expect_setequal(Check$Formulas$PO$fish1$geometry$RHS, c("PO_spatial", "fish1_intercept", "fish1_PO_spatial")) expect_setequal(Check$Formulas$PA$bird2$PAresp$RHS, c("PA_spatial", "bird2_intercept", 'pointcov', "bird2_PA_spatial")) expect_setequal(Check$Formulas$PA$bird1$PAresp$RHS, c("PA_spatial", "bird1_intercept", "pointcov", "bird1_PA_spatial")) ##Make random species intercept terms Check$makeFormulas(spatcovs = 'spatcovs', speciesname = 'species', markintercept = TRUE, speciesintercept = TRUE, speciesenvironment = TRUE, paresp = 'PAresp', countresp = 'counts', marksspatial = TRUE, speciesspatial = 'individual', marks = c('numvar', 'factvar', 'binommark'), temporalname = 'temp', speciesindependent = FALSE, spatial = 'shared', intercept = TRUE, pointcovs = 'pointcov') expect_setequal(Check$Formulas$PO$fish2$geometry$RHS, c('shared_spatial',"fish2_PO_spatial", "species_intercepts", 'fish2_spatcovs')) expect_setequal(Check$Formulas$PO$fish1$geometry$RHS, c("shared_spatial", "fish1_PO_spatial", "species_intercepts", 'fish1_spatcovs')) expect_setequal(Check$Formulas$PA$bird2$PAresp$RHS, c("shared_spatial", "species_intercepts", "bird2_PA_spatial", 'bird2_spatcovs', 'pointcov')) expect_setequal(Check$Formulas$PA$bird1$PAresp$RHS, c("shared_spatial", "species_intercepts", "bird1_PA_spatial", 'bird1_spatcovs', 'pointcov')) }) #Change back to original Check$makeFormulas(spatcovs = 'spatcovs', speciesname = 'species', marksspatial = TRUE, speciesintercept = TRUE, speciesenvironment = TRUE, paresp = 'PAresp', countresp = 'counts', markintercept = TRUE, speciesspatial = 'individual', marks = c('numvar', 'factvar', 'binommark'), temporalname = 'temp', speciesindependent = FALSE, spatial = 'shared', intercept = TRUE, pointcovs = 'pointcov') test_that('makeComponents is able to make the correct components for all the processes based on the predictors and spatial effects available.', { comps <- Check$makeComponents(spatial = 'shared', intercepts = TRUE, datanames = c('PO','PA'), marksintercept = TRUE, speciesintercept = FALSE, speciesenvironment = TRUE, marks = c('numvar', 'factvar', 'binommark'), temporalmodel = deparse(list(model = "ar1")), speciesindependent = FALSE, multinomnames = 'factvar', pointcovariates = 'pointcov', marksspatial = TRUE, offsetname = NULL, speciesname = 'species', covariatenames = 'spatcovs', temporalname = 'temp', speciesspatial = 'individual', covariateclass = 'numeric', numtime = 2, copymodel = Check$.__enclos_env__$private$copyModel) expect_setequal(comps,c("shared_spatial(main = geometry, model = shared_field, group = temp, ngroup = 2, control.group = list(model = \"ar1\"))", "fish2_PO_spatial(main = geometry, model = fish2_PO_field)", "fish1_PO_spatial(main = geometry, model = fish1_PO_field)", "bird2_PA_spatial(main = geometry, model = bird2_PA_field)", "bird1_PA_spatial(main = geometry, model = bird1_PA_field)", "numvar_spatial(main = geometry, model = numvar_field, group = temp, ngroup = 2, control.group = list(model = \"ar1\"))" , "factvar_spatial(main = geometry, model = factvar_field, group = temp, ngroup = 2, control.group = list(model = \"ar1\"))", "binommark_spatial(main = geometry, model = binommark_field, group = temp, ngroup = 2, control.group = list(model = \"ar1\"))", "fish2_spatcovs(main = fish2_spatcovs, model = \"numeric\")", "fish1_spatcovs(main = fish1_spatcovs, model = \"numeric\")", "bird2_spatcovs(main = bird2_spatcovs, model = \"numeric\")", "bird1_spatcovs(main = bird1_spatcovs, model = \"numeric\")", "pointcov", "fish2_intercept(1)", "fish1_intercept(1)", "bird2_intercept(1)", "bird1_intercept(1)", "factvar(main = factvar, model = \"iid\",constr = FALSE, fixed=TRUE)", "factvar_phi(main = factvar_phi, model = \"iid\", initial = -10, fixed = TRUE)", "numvar_intercept(1)", "binommark_intercept(1)")) ## Change arguments #spatial and intercepts == FALSE comps2 <- Check$makeComponents(spatial = NULL, intercepts = FALSE, datanames = c('PO','PA'), speciesintercept = FALSE, speciesenvironment = TRUE, marks = c('numvar', 'factvar', 'binommark'), marksspatial = FALSE, offsetname = NULL, multinomnames = 'factvar', pointcovariates = 'pointcov', marksintercept = FALSE, speciesindependent = FALSE, speciesname = 'species', covariatenames = 'spatcovs', speciesspatial = 'individual', covariateclass = 'numeric', numtime = 2, copymodel = Check$.__enclos_env__$private$copyModel) expect_setequal(comps2,c("fish2_PO_spatial(main = geometry, model = fish2_PO_field)", "fish1_PO_spatial(main = geometry, model = fish1_PO_field)", "bird2_PA_spatial(main = geometry, model = bird2_PA_field)", "bird1_PA_spatial(main = geometry, model = bird1_PA_field)", "fish2_spatcovs(main = fish2_spatcovs, model = \"numeric\")", "fish1_spatcovs(main = fish1_spatcovs, model = \"numeric\")", "bird2_spatcovs(main = bird2_spatcovs, model = \"numeric\")", "bird1_spatcovs(main = bird1_spatcovs, model = \"numeric\")", "pointcov", "factvar(main = factvar, model = \"iid\",constr = FALSE, fixed=TRUE)", "factvar_phi(main = factvar_phi, model = \"iid\", initial = -10, fixed = TRUE)")) #checkComponents with a copy model compsCopy <- Check$makeComponents(spatial = 'copy', intercepts = FALSE, datanames = c('PO','PA'), speciesintercept = FALSE, speciesenvironment = TRUE, marks = c('numvar', 'factvar', 'binommark'), marksspatial = FALSE, offsetname = NULL, multinomnames = 'factvar', pointcovariates = 'pointcov', marksintercept = FALSE, speciesindependent = FALSE, speciesname = 'species', covariatenames = 'spatcovs', speciesspatial = 'individual', temporalname = NULL, covariateclass = 'numeric', numtime = NULL, copymodel = "list(beta = list(fixed = FALSE))") expect_setequal(compsCopy,c("PO_spatial(main = geometry, model = PO_field)", "PA_spatial(main = geometry, copy = \"PO_spatial\", hyper = list(beta = list(fixed = FALSE)))", "fish1_PO_spatial(main = geometry, model = fish1_PO_field)", "fish2_PO_spatial(main = geometry, model = fish2_PO_field)", "bird1_PA_spatial(main = geometry, model = bird1_PA_field)", "bird2_PA_spatial(main = geometry, model = bird2_PA_field)", "fish1_spatcovs(main = fish1_spatcovs, model = \"numeric\")", "fish2_spatcovs(main = fish2_spatcovs, model = \"numeric\")", "bird1_spatcovs(main = bird1_spatcovs, model = \"numeric\")", "bird2_spatcovs(main = bird2_spatcovs, model = \"numeric\")", "pointcov", "factvar(main = factvar, model = \"iid\",constr = FALSE, fixed=TRUE)", "factvar_phi(main = factvar_phi, model = \"iid\", initial = -10, fixed = TRUE)")) #Species random effects compsRandom <- Check$makeComponents(spatial = 'shared', intercepts = TRUE, datanames = c('PO','PA'), marksintercept = TRUE, speciesintercept = TRUE, speciesenvironment = TRUE, marks = c('numvar', 'factvar', 'binommark'), temporalmodel = deparse(list(model = "ar1")), speciesindependent = FALSE, multinomnames = 'factvar', pointcovariates = 'pointcov', marksspatial = TRUE, offsetname = NULL, speciesname = 'species', covariatenames = 'spatcovs', temporalname = 'temp', speciesspatial = 'individual', covariateclass = 'numeric', numtime = 2, copymodel = Check$.__enclos_env__$private$copyModel) expect_setequal(compsRandom, c("shared_spatial(main = geometry, model = shared_field, group = temp, ngroup = 2, control.group = list(model = \"ar1\"))", "fish2_PO_spatial(main = geometry, model = fish2_PO_field)", "fish1_PO_spatial(main = geometry, model = fish1_PO_field)", "bird2_PA_spatial(main = geometry, model = bird2_PA_field)", "bird1_PA_spatial(main = geometry, model = bird1_PA_field)", "numvar_spatial(main = geometry, model = numvar_field, group = temp, ngroup = 2, control.group = list(model = \"ar1\"))" , "factvar_spatial(main = geometry, model = factvar_field, group = temp, ngroup = 2, control.group = list(model = \"ar1\"))", "binommark_spatial(main = geometry, model = binommark_field, group = temp, ngroup = 2, control.group = list(model = \"ar1\"))", "fish2_spatcovs(main = fish2_spatcovs, model = \"numeric\")", "fish1_spatcovs(main = fish1_spatcovs, model = \"numeric\")", "bird2_spatcovs(main = bird2_spatcovs, model = \"numeric\")", "bird1_spatcovs(main = bird1_spatcovs, model = \"numeric\")", "pointcov", 'species_intercepts(main = species, model = "iid")', "factvar(main = factvar, model = \"iid\",constr = FALSE, fixed=TRUE)", "factvar_phi(main = factvar_phi, model = \"iid\", initial = -10, fixed = TRUE)", "numvar_intercept(1)", "binommark_intercept(1)")) #Species but dataset intercepts compsData <- Check$makeComponents(spatial = 'shared', intercepts = TRUE, datanames = c('PO','PA'), marksintercept = TRUE, speciesintercept = NULL, speciesenvironment = TRUE, marks = c('numvar', 'factvar', 'binommark'), temporalmodel = deparse(list(model = "ar1")), speciesindependent = FALSE, multinomnames = 'factvar', pointcovariates = 'pointcov', marksspatial = TRUE, offsetname = NULL, speciesname = 'species', covariatenames = 'spatcovs', temporalname = 'temp', speciesspatial = 'individual', covariateclass = 'numeric', numtime = 2, copymodel = Check$.__enclos_env__$private$copyModel) expect_setequal(compsData, c("shared_spatial(main = geometry, model = shared_field, group = temp, ngroup = 2, control.group = list(model = \"ar1\"))", "fish2_PO_spatial(main = geometry, model = fish2_PO_field)", "fish1_PO_spatial(main = geometry, model = fish1_PO_field)", "bird2_PA_spatial(main = geometry, model = bird2_PA_field)", "bird1_PA_spatial(main = geometry, model = bird1_PA_field)", "numvar_spatial(main = geometry, model = numvar_field, group = temp, ngroup = 2, control.group = list(model = \"ar1\"))" , "factvar_spatial(main = geometry, model = factvar_field, group = temp, ngroup = 2, control.group = list(model = \"ar1\"))", "binommark_spatial(main = geometry, model = binommark_field, group = temp, ngroup = 2, control.group = list(model = \"ar1\"))", "fish2_spatcovs(main = fish2_spatcovs, model = \"numeric\")", "fish1_spatcovs(main = fish1_spatcovs, model = \"numeric\")", "bird2_spatcovs(main = bird2_spatcovs, model = \"numeric\")", "bird1_spatcovs(main = bird1_spatcovs, model = \"numeric\")", "pointcov", 'PO_intercept(1)', 'PA_intercept(1)', "factvar(main = factvar, model = \"iid\",constr = FALSE, fixed=TRUE)", "factvar_phi(main = factvar_phi, model = \"iid\", initial = -10, fixed = TRUE)", "numvar_intercept(1)", "binommark_intercept(1)")) })