test_that("summariseCohortOverlap", { skip_on_cran() person <- dplyr::tibble( person_id = c(1:20, 199), gender_concept_id = 8532, year_of_birth = runif(n=21, min=1950, max=2000), month_of_birth = runif(n=21, min=1, max=12), day_of_birth = runif(n=21, min=1, max=28), race_concept_id= 0, ethnicity_concept_id = 0 ) table <- dplyr::tibble( cohort_definition_id = c(rep(1, 15), rep(2, 10), rep(3, 15), rep(4, 5), 5), subject_id = c(20, 5, 10, 12, 4, 15, 2, 1, 5, 10, 5, 8, 13, 4, 10, 6, 18, 5, 1, 20, 14, 13, 8, 17, 3, 16, 15, 20, 17, 3, 14, 6, 11, 8, 7, 20, 19, 5, 2, 18, 5, 12, 3, 14, 13, 199), cohort_start_date = as.Date(c(rep("2000-01-01",5), rep("2010-09-05",5), rep("2006-05-01",5), rep("2003-03-31",5), rep("2008-07-02",5), rep("2000-01-01",5), rep("2012-09-05",5), rep("1996-05-01",5), rep("1989-03-31",5), "1989-03-31")), cohort_end_date = as.Date(c(rep("2000-01-01",5), rep("2010-09-05",5), rep("2006-05-01",5), rep("2003-03-31",5), rep("2008-07-02",5), rep("2000-01-01",5), rep("2012-09-05",5), rep("1996-05-01",5), rep("1989-03-31",5), "1989-03-31")) ) obs <- dplyr::tibble( observation_period_id = c(1:20, 199), person_id = c(1:20, 199), observation_period_start_date = as.Date("1930-01-01"), observation_period_end_date = as.Date("2025-01-01"), period_type_concept_id = NA ) cdm <- mockPatientProfiles(person = person, observation_period = obs, table = table) overlap1 <- summariseCohortOverlap(cdm$table) expect_equal(omopgenerics::resultColumns("summarised_result"), colnames(overlap1)) expect_equal(overlap1$group_name |> unique(), "cohort_name_reference &&& cohort_name_comparator") expect_true(nrow(overlap1) == 5*4*6) expect_true(overlap1 |> dplyr::filter(grepl("cohort_5", .data$group_level)) |> dplyr::pull(estimate_value) |> unique() == "0") expect_equal(unique(overlap1$strata_name), "overall") expect_equal(unique(overlap1$strata_level), "overall") expect_equal(unique(overlap1$additional_name), "overall") expect_equal(unique(overlap1$additional_level), "overall") expect_true(all(c("count", "percentage") %in% unique(overlap1$estimate_name))) # strata and cohortID ---- overlap2 <- summariseCohortOverlap(cdm$table, cohortId = 1:2) expect_true(nrow(overlap2) == 2*6) expect_true(all( c("cohort_2 &&& cohort_1", "cohort_1 &&& cohort_2") %in% unique(overlap2$group_level))) cdm$table <- cdm$table |> addAge(ageGroup = list(c(0,40), c(41,100))) |> addSex() |> dplyr::compute(name = "table", temporary = FALSE) |> omopgenerics::newCohortTable() s <- cdm$table |> dplyr::filter(cohort_definition_id %in% 1:2) |> dplyr::distinct(age_group, sex) s1 <- nrow(s |> dplyr::collect()) s2 <- nrow(s |> dplyr::distinct(age_group) |> dplyr::collect()) overlap3 <- summariseCohortOverlap(cdm$table, cohortId = 1:2, strata = list("age_group", c("age_group", "sex"))) expect_true(all(unique(overlap3$group_level) %in% unique(overlap1$group_level))) expect_true(all(c("overall", "age_group", "age_group &&& sex") %in% unique(overlap3$strata_name))) expect_true(nrow(overlap3) == 2*6 + 2*6*s1 + 2*6*s2) CDMConnector::cdm_disconnect(cdm) })