# Test 1: Function returns a ggplot object test_that("Function returns a ggplot object", { person <- dplyr::tibble( person_id = c(1, 2), gender_concept_id = c(8507, 8532), year_of_birth = c(1990, 1992), month_of_birth = c(1, 1), day_of_birth = c(1, 1), race_concept_id = 0, ethnicity_concept_id = 0 ) observation_period <- dplyr::tibble( observation_period_id = c(1, 2), person_id = c(1, 2), observation_period_start_date = as.Date(c("2011-10-07", "2000-01-01")), observation_period_end_date = as.Date(c("2031-10-07", "2030-01-01")), period_type_concept_id = 44814724 ) cohort_interest <- dplyr::tibble( cohort_definition_id = c(1, 1, 1, 2), subject_id = c(1, 1, 2, 2), cohort_start_date = as.Date(c( "2012-10-10", "2015-01-01", "2013-10-10", "2015-01-01" )), cohort_end_date = as.Date(c( "2012-10-10", "2015-01-01", "2013-10-10", "2015-01-01" )) ) drug_exposure <- dplyr::tibble( drug_exposure_id = 1:11, person_id = c(rep(1, 8), rep(2, 3)), drug_concept_id = c( rep(1125315, 2), rep(1503328, 5), 1516978, 1125315, 1503328, 1516978 ), drug_exposure_start_date = as.Date(c( "2010-10-01", "2012-12-31", "2010-01-01", "2012-09-01", "2013-04-01", "2014-10-31", "2015-05-01", "2015-10-01", "2012-01-01", "2012-10-01", "2014-10-12" )), drug_exposure_end_date = as.Date(c( "2010-12-01", "2013-05-12", "2011-01-01", "2012-10-01", "2013-05-01", "2014-12-31", "2015-05-02", "2016-10-01", "2012-01-01", "2012-10-30", "2015-01-10" )), drug_type_concept_id = 38000177, quantity = 1 ) condition_occurrence <- dplyr::tibble( condition_occurrence_id = 1:8, person_id = c(rep(1, 4), rep(2, 4)), condition_concept_id = c( 317009, 378253, 378253, 4266367, 317009, 317009, 378253, 4266367 ), condition_start_date = as.Date(c( "2012-10-01", "2012-01-01", "2014-01-01", "2010-01-01", "2015-02-01", "2012-01-01", "2013-10-01", "2014-10-10" )), condition_end_date = as.Date(c( "2013-01-01", "2012-04-01", "2014-10-12", "2015-01-01", "2015-03-01", "2012-04-01", "2013-12-01", NA )), condition_type_concept_id = 32020 ) cdm <- mockPatientProfiles( connectionDetails, person = person, observation_period = observation_period, cohort_interest = cohort_interest, drug_exposure = drug_exposure, condition_occurrence = condition_occurrence ) concept <- dplyr::tibble( concept_id = c(1125315, 1503328, 1516978, 317009, 378253, 4266367), domain_id = NA_character_, vocabulary_id = NA_character_, concept_class_id = NA_character_, concept_code = NA_character_, valid_start_date = as.Date("1900-01-01"), valid_end_date = as.Date("2099-01-01") ) %>% dplyr::mutate(concept_name = paste0("concept: ", .data$concept_id)) cdm <- CDMConnector::insertTable(cdm, "concept", concept) test_data <- cdm$cohort_interest %>% addDemographics( ageGroup = list(c(0, 24), c(25, 150)) ) %>% summariseLargeScaleCharacteristics( strata = list("age_group", c("age_group", "sex")), episodeInWindow = c("condition_occurrence", "drug_exposure"), minimumFrequency = 0 ) levels_ordered <- c("-inf to -366", "-365 to -31", "-30 to -1", "0 to 0", "1 to 30", "31 to 365", "366 to inf") plot <- plotLargeScaleCharacteristics( data = test_data %>% dplyr::filter(group_level == "cohort_1"), xAxis = "variable_name", yAxis = "estimate_value", facetVars = c("variable_level"), colorVars = c("group_level", "strata_level", "strata_name"), vertical_x = TRUE, facetOrder = levels_ordered ) expect_true(ggplot2::is.ggplot(plot))# levels_ordered <- c("-inf to -366.cohort_1", "-inf to -366.cohort_2", "-365 to -31.cohort_1", "-365 to -31.cohort_2") plot_multiple <- plotLargeScaleCharacteristics( data = test_data %>% dplyr::filter(group_level %in% c("cohort_1", "cohort_2")), xAxis = "variable_name", yAxis = "estimate_value", facetVars = c("variable_level", "group_level"), colorVars = c("strata_level", "strata_name"), facetOrder = levels_ordered ) expect_true(ggplot2::is.ggplot(plot_multiple)) #do not throw error even if they do not specify color or facet expect_no_error(plotLargeScaleCharacteristics( data = test_data, xAxis = "variable_name", yAxis = "estimate_value")) })