# This test script calls a report generator which requires # the 'ggplot2' package, which in turn will require packages # 'colorspace', 'dichromat', 'munsell', 'reshape2' and 'scales'. # Only run this test in full testing mode if (Sys.getenv("_R_CHECK_FULL_") != "") { library("PSCBS") # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Load SNP microarray data # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - data <- PSCBS::exampleData("paired.chr01") str(data) data <- data.frame(chromosome=data$chromosome, x=data$x, y=data$CT) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # CBS segmentation # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Drop single-locus outliers dataS <- dropSegmentationOutliers(data) # Speed up example by segmenting fewer loci dataS <- dataS[seq(from=1, to=nrow(data), by=5),] str(dataS) gaps <- findLargeGaps(dataS, minLength=2e6) knownSegments <- gapsToSegments(gaps) # CBS segmentation fit <- segmentByCBS(dataS, knownSegments=knownSegments, seed=0xBEEF, verbose=-10) signalType(fit) <- "ratio" # Fake a multi-chromosome segmentation fit1 <- fit fit2 <- renameChromosomes(fit, from=1, to=2) fit <- c(fit1, fit2) report(fit, sampleName="CBS", studyName="CBS-Ex", verbose=-10) } # if (Sys.getenv("_R_CHECK_FULL_"))