# This test script calls a report generator which requires # the 'ggplot2' package, which in turn will require packages # 'colorspace', 'dichromat', 'munsell', 'reshape2' and 'scales'. # Only run this test in full testing mode if (Sys.getenv("_R_CHECK_FULL_") != "") { library("PSCBS") stext <- R.utils::stext # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Load SNP microarray data # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - data <- PSCBS::exampleData("paired.chr01") str(data) data <- data.frame(chromosome=data$chromosome, x=data$x, y=data$CT) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # CBS segmentation # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Drop single-locus outliers dataS <- dropSegmentationOutliers(data) # Speed up example by segmenting fewer loci dataS <- dataS[seq(from=1, to=nrow(data), by=5),] str(dataS) gaps <- findLargeGaps(dataS, minLength=2e6) knownSegments <- gapsToSegments(gaps) # CBS segmentation fit <- segmentByCBS(dataS, knownSegments=knownSegments, seed=0xBEEF, verbose=-10) signalType(fit) <- "ratio" plotTracks(fit) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Call using the UCSF MAD caller (not recommended) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - fitC <- callGainsAndLosses(fit) plotTracks(fitC) pars <- fitC$params$callGainsAndLosses stext(side=3, pos=1/2, line=-1, substitute(sigma==x, list(x=sprintf("%.2f", pars$sigmaMAD)))) mu <- pars$muR tau <- unlist(pars[c("tauLoss", "tauGain")], use.names=FALSE) abline(h=mu, lty=2, lwd=2) abline(h=tau, lwd=2) mtext(side=4, at=tau[1], expression(Delta[LOSS]), adj=-0.2, cex=0.7, las=2, xpd=TRUE) mtext(side=4, at=tau[2], expression(Delta[GAIN]), adj=-0.2, cex=0.7, las=2, xpd=TRUE) title(main="CN caller: \"ucsf-mad\"") # Caller to be implemented deltaCN <- estimateDeltaCN(fit) tau <- mu + 1/2*c(-1,+1)*deltaCN abline(h=tau, lty=2, lwd=1, col="red") } # if (Sys.getenv("_R_CHECK_FULL_"))