library(testthat) library(PRNG) library(nortest) # For additional normality tests # Uniformity Test test_that("Uniformity Test", { random_numbers <- runf(n = 100, Time = FALSE) ks_result <- ks.test(random_numbers, "punif", 0, 1) expect_true(ks_result$p.value > 0.05, "Generated random numbers do not follow a uniform distribution") }) # Independence Test test_that("Independence Test", { random_numbers <- runf(N = 1000,Time = FALSE) autocorr_result <- acf(random_numbers, plot = FALSE) expect_true(all(abs(autocorr_result$acf[2:10]) < 0.1), "Consecutive random numbers are not independent.") }) # Seed Sensitivity Test test_that("Seed Sensitivity Test", { seed1 <- runf(n = 1000, x00 = 0.1, Time = FALSE) seed2 <- runf(n = 1000, x00 = 0.1001, Time = FALSE) expect_false(identical(seed1, seed2), "Small changes in seed do not result in different sequences.") }) # Performance Test test_that("Performance Test", { start_time <- Sys.time() runf(n = 100000, Time = FALSE) end_time <- Sys.time() expect_true(difftime(end_time, start_time, units = "secs") < 1, "Random number generation is too slow.") }) test_that("Edge Cases Test", { expect_error(runf(N = -10), "N must be a positive integer") expect_error(runf(N = 0), "N must be a positive integer") expect_error(runf(x00 = -0.1), "x00 must be in the range \\[0, 1\\]") expect_error(runf(x00 = 1.1), "x00 must be in the range \\[0, 1\\]") expect_error(runf(x01 = -0.1), "x01 must be in the range \\[0, 1\\]") expect_error(runf(x01 = 1.1), "x01 must be in the range \\[0, 1\\]") expect_error(runf(x02 = -0.1), "x02 must be in the range \\[0, 1\\]") expect_error(runf(x02 = 1.1), "x02 must be in the range \\[0, 1\\]") expect_error(runf(a1 = 3.4), "a1 must be in the range \\[3.5, 4\\]") expect_error(runf(a1 = 4.1), "a1 must be in the range \\[3.5, 4\\]") expect_error(runf(a2 = 0.4), "a2 must be >= 0.5") }) test_that("Valid Inputs Test", { expect_silent(runf(N = 10, x00 = 0.5, x01 = 0.5, x02 = 0.5, a1 = 3.8, a2 = 0.7)) }) # Helper function to run multiple normality tests and return TRUE if all pass run_normality_tests <- function() { normal_numbers <- rnorm(n = 2000) shapiro_p <- shapiro.test(normal_numbers)$p.value ad_p <- ad.test(normal_numbers)$p.value # Anderson-Darling test ks_p <- ks.test(normal_numbers, "pnorm", mean(normal_numbers), sd(normal_numbers))$p.value # KS test # All p-values should be greater than 0.05 for the sample to be considered normally distributed all(c(shapiro_p, ad_p, ks_p) > 0.01) } test_that("Distribution Test - Normal", { # Run the test multiple times to account for randomness results <- replicate(100, run_normality_tests()) # Check if a reasonable proportion of results are TRUE expect_true(mean(results) > 0.6, "Generated numbers do not follow a normal distribution in the majority of tests") })