R Under development (unstable) (2024-10-16 r87241 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(POT) > set.seed(123) > > mc <- simmc(100, alpha = 0.25) > mc <- qgpd(mc, 0, 1, 0.25) > ##A first application when marginal parameter are estimated > f1 <- fitmcgpd(mc, 0) > str(f1) List of 22 $ fitted.values: Named num [1:3] 0.841 0.331 0.247 ..- attr(*, "names")= chr [1:3] "scale" "shape" "alpha" $ std.err : Named num [1:3] 0.5453 0.1893 0.0634 ..- attr(*, "names")= chr [1:3] "scale" "shape" "alpha" $ var.cov : num [1:3, 1:3] 0.2973 -0.0165 -0.0281 -0.0165 0.0358 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:3] "scale" "shape" "alpha" .. ..$ : chr [1:3] "scale" "shape" "alpha" $ fixed : NULL $ param : Named num [1:3] 0.841 0.331 0.247 ..- attr(*, "names")= chr [1:3] "scale" "shape" "alpha" $ deviance : num 42 $ corr : NULL $ convergence : chr "successful" $ counts : Named int [1:2] 50 14 ..- attr(*, "names")= chr [1:2] "function" "gradient" $ message : NULL $ threshold : num 0 $ nat : int 98 $ pat : num 1 $ data : num [1:100] 0.354 0.573 0.509 0.905 1.602 ... $ exceed : num [1:98] 0.573 0.509 0.905 1.602 0.72 ... $ call : language fitmcgpd(data = mc, threshold = 0) $ est : chr "MLE" $ model : chr "log" $ logLik : num -21 $ var.thresh : logi FALSE $ opt.value : num -21 $ chi : Named num 0.813 ..- attr(*, "names")= chr "alpha" - attr(*, "class")= chr [1:3] "mcpot" "uvpot" "pot" > f1 Call: fitmcgpd(data = mc, threshold = 0) Estimator: MLE Dependence Model and Strenght: Model : Logistic lim_u Pr[ X_1 > u | X_2 > u] = 0.813 Deviance: 41.99968 AIC: 47.99968 Threshold Call: Number Above: 98 Proportion Above: 1 Estimates scale shape alpha 0.8409 0.3309 0.2467 Standard Errors scale shape alpha 0.54526 0.18926 0.06336 Asymptotic Variance Covariance scale shape alpha scale 0.297306 -0.016485 -0.028131 shape -0.016485 0.035818 -0.004116 alpha -0.028131 -0.004116 0.004015 Optimization Information Convergence: successful Function Evaluations: 50 Gradient Evaluations: 14 > > proc.time() user system elapsed 0.23 0.12 0.32