context("test-plnnetworkfit") data(trichoptera) trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate) test_that("PLNnetwork fit: check classes, getters and field access", { models <- PLNnetwork(Abundance ~ 1, data = trichoptera) X <- model.matrix(Abundance ~ 1, data = trichoptera) Y <- as.matrix(trichoptera$Abundance) n <- nrow(Y); p <- ncol(Y) O <- matrix(0, n, p) w <- rep(1, n) ## PLNnetworkfit myPLNfit <- getBestModel(models) ## fields and active bindings expect_equal(dim(myPLNfit$latent), dim(Y)) expect_equal(dim(myPLNfit$model_par$B), c(ncol(X), ncol(Y))) expect_equal(dim(myPLNfit$model_par$Omega), c(ncol(Y), ncol(Y))) expect_equal(dim(myPLNfit$model_par$Sigma), c(ncol(Y), ncol(Y))) expect_equal(dim(myPLNfit$var_par$M), c(nrow(Y), ncol(Y))) expect_equal(dim(myPLNfit$var_par$S), c(nrow(Y), ncol(Y))) expect_equal(sum(myPLNfit$loglik_vec), myPLNfit$loglik) expect_lt(myPLNfit$BIC, myPLNfit$loglik) expect_lt(myPLNfit$EBIC, myPLNfit$loglik) expect_lt(myPLNfit$EBIC, myPLNfit$BIC) expect_equal(myPLNfit$R_squared, NA) expect_gt(myPLNfit$density, 0) expect_true(myPLNfit$penalty > 0) expect_true(is.data.frame(myPLNfit$criteria)) expect_equal(myPLNfit$nb_param, 2 *p + myPLNfit$n_edges) ## S3 methods expect_equal(coefficients(myPLNfit), myPLNfit$model_par$B) expect_equal(dim(fitted(myPLNfit)), dim(Y)) expect_equal(sigma(myPLNfit), myPLNfit$model_par$Sigma) expect_error(vcov(myPLNfit, "main")) expect_null(myPLNfit$vcov_coef) expect_equal(vcov(myPLNfit, "covariance"), myPLNfit$model_par$Sigma) expect_equal(vcov(myPLNfit, "covariance"), sigma(myPLNfit)) expect_warning(standard_error(myPLNfit)) expect_true(igraph::is.igraph(myPLNfit$plot_network(output = "igraph", plot = FALSE))) expect_true(inherits(myPLNfit$plot_network(output = "corrplot", plot = FALSE), "Matrix")) })