#testing CV-related functions ## code here that contains the tests rm(list = ls()) library(PAFit) # alpha = 0.5, s = 10, ii = 220 # for CRAN. In developing, set ii from 1 to 1000 for (ii in 1) { set.seed(2) print(ii) prob_m <- "FALSE" inc <- "FALSE" log <- c("FALSE") i <- 1 net <- generate_net(N = 1000, m = 1,prob_m = prob_m, increase = inc, log = log, multiple_node = 1, num_seed = 20, mode = i, s = 10,alpha = 0.5) net_stat <- get_statistics(net,deg_threshold = 5, binning = TRUE, g = 50) result_A <- only_A_estimate(net, net_stat, stop_cond = 10^-5) result <- joint_estimate(net, net_stat, stop_cond = 10^-5) plot(result,net_stats) }