if (FALSE) { rm(list = ls()) set.seed(1) library("PAFit") # size of initial network = 100 # number of new nodes at each time-step = 100 # Ak = k; inverse variance of the distribution of node fitnesse = 5 #alpha <- rep(0,100) s <- rep(0,50) alpha <- rep(0,50) for (j in 1:50) { print(paste0("j:",j)) net <- generate_net(N = 1000 , m = 50 , num_seed = 200 , multiple_node = 50, alpha = -1, s = 5) net_stats <- get_statistics(net,deg_threshold = 0) result_big <- joint_estimate(net,net_stats) s[j] <- result_big$estimate_result$shape alpha[j] <- result_big$estimate_result$alpha #data_cv <- .CreateDataCV(net, g = 50, deg_thresh = 0, # p = 0.75) #cv_result <- PAFit(data_cv$stats,s = 5,mode_f = "Log_linear") #alpha[j] <- cv_result$alpha } } # Joint estimation of attachment function Ak and node fitness #result <- joint_estimate(net, net_stats) #data_cv <- .CreateDataCV(net, g = 50, deg_thresh = 0, # p = 0.75) #cv_result <- PAFit(data_cv$stats, r = 0.1, s = 5) # name_z_j <- intersect(names(data_cv$stats$z_j), as.character(as.numeric(data_cv$stats$node_before_final))) # z_j_before_final <- data_cv$stats$z_j[name_z_j] # no_edge <- names(z_j_before_final[z_j_before_final == 0]) # cv_result$f[no_edge] # cv_result$var_f[no_edge] # plot(cv_result,data_cv$stats) # cv_result #result_only_F <- only_F_estimate(net,net_stats) # plot(result_big,net_stats) # plot(result_big, net_stats, true = net$fitness, plot = "true_f") #