# Create temp dir for testthat tmp <- file.path(tempdir(), "OpenSpecy-testthat") dir.create(tmp, showWarnings = F) test_that("Raman batch analysis with test library", { skip_on_cran() skip_if_offline(host = "api.osf.io") batch <- read_extdata("testdata_zipped.zip") |> read_any() |> expect_silent() is_OpenSpecy(batch) |> expect_true() plot(batch) |> expect_silent() plotly_spec(batch) |> expect_silent() expect_true(check_OpenSpecy(batch)) get_lib(type = "test", path = tmp) |> expect_no_error() check_lib(type = "test", path = tmp) |> expect_silent() lib <- load_lib(type = "test", path = tmp) |> expect_silent() filter_spec(lib, lib$metadata$SpectrumType == "Raman") |> expect_silent() batch2 <- conform_spec(batch, lib$wavenumber, res = spec_res(lib$wavenumber)) |> expect_silent() expect_true(check_OpenSpecy(batch2)) plotly_spec(batch2) |> expect_silent() sig_noise(batch2, metric = "run_sig_over_noise") |> expect_silent() batch3 <- process_spec(batch2, subtr_baseline = T) |> expect_silent() plotly_spec(x = batch3, x2 = batch) |> expect_silent() expect_true(check_OpenSpecy(batch3)) matches <- cor_spec(batch3, library = lib) |> expect_silent() test_max_cor <- max_cor_named(matches) |> expect_silent() sig_noise(batch3, metric = "run_sig_over_noise") |> expect_silent() }) #test_that("Raman batch analysis with complete library", { # skip_on_cran() # skip_if_offline(host = "api.osf.io") # skip_if_not(testthat:::on_ci(), "Not on CI")# # batch <- read_extdata(file = "testdata_zipped.zip") |> read_any() |> # expect_silent() # is_OpenSpecy(batch) |> expect_true() # plot(batch) |> expect_silent() # plotly_spec(batch) |> expect_silent() # get_lib(type = "nobaseline", path = tmp) |> expect_no_error() # check_lib(type = "nobaseline", path = tmp) |> expect_silent() # lib <- load_lib(type = "nobaseline", path = tmp) |> expect_silent() # filter_spec(lib, lib$metadata$spectrum_type == "raman") |> expect_silent() # batch2 <- conform_spec(batch, range = lib$wavenumber, # res = spec_res(lib$wavenumber)) |> # expect_silent() # expect_true(check_OpenSpecy(batch2)) # plotly_spec(batch2) |> expect_silent() # test_sn2 <- sig_noise(batch2, metric = "run_sig_over_noise") |> # expect_silent() # batch3 <- process_spec(batch2, subtr_baseline = T) |> expect_silent() # plotly_spec(x = batch3, x2 = batch) |> expect_silent() # expect_true(check_OpenSpecy(batch3)) # matches <- cor_spec(batch3, library = lib) |> expect_silent() # test_max_cor <- max_cor_named(matches) |> expect_silent() # test_sn <- sig_noise(batch3, metric = "run_sig_over_noise") |> # expect_silent() # heatmap_spec(batch3, sn = test_sn, cor = test_max_cor, min_sn = 4, # min_cor = 0.7, select = 2, source = "heatplot") |> # expect_silent() #}) test_that("One particle is identified with standard workflow in map", { skip_on_cran() map <- read_extdata("CA_tiny_map.zip") |> read_any() signal_noise <- sig_noise(map, metric = "sig_times_noise", abs = F) id_map <- def_features(map,signal_noise > 0.01) unique(id_map$metadata$feature_id) |> length() |> expect_equal(4) test_collapsed <- collapse_spec(id_map) test_collapsed$metadata |> nrow() |> expect_equal(4) test_collapsed$metadata$feret_max |> round(2) |> expect_equal(c(NA, 8, 12.31, 4.00)) test_collapsed$metadata$centroid_x |> round(2) |> expect_equal(c(7.87, 2.00, 7.9, 0.00)) }) # Tidy up unlink(tmp, recursive = T)