library(OpenMx) library(testthat) context("loadDataByRow") suppressWarnings(RNGversion("3.5")) set.seed(1) skip_if(mxOption(key="Default optimizer") == 'NPSOL') #mxOption(NULL, "Number of Threads", 1L) data("jointdata", package ="OpenMx") # specify ordinal columns as ordered factors jointdata[,c(2,4,5)] <- mxFactor(jointdata[,c(2,4,5)], levels=list(c(0,1), c(0, 1, 2, 3), c(0, 1, 2))) satCov <- mxMatrix("Symm", 5, 5, free=TRUE, values=diag(5), name="C") satCov$free[2,2] <- FALSE satCov$free[4,4] <- FALSE satCov$free[5,5] <- FALSE loadings <- mxMatrix("Full", 1, 5, free=TRUE, values=1, name="L", lbound=0) loadings$ubound[1,4:5] <- 2 resid <- mxMatrix("Diag", 5, 5, free=c(TRUE, FALSE, TRUE, FALSE, FALSE), values=.5, name="U") means <- mxMatrix("Full", 1, 5, free=c(TRUE, FALSE, TRUE, FALSE, FALSE), values=0, name="M") thresh <- mxMatrix("Full", 3, 3, FALSE, 0, name="T") thresh$free[,1] <- c(TRUE, FALSE, FALSE) thresh$values[,1] <- c(0, NA, NA) thresh$labels[,1] <- c("z2t1", NA, NA) thresh$free[,2] <- TRUE thresh$values[,2] <- c(-1, 0, 1) thresh$labels[,2] <- c("z4t1", "z4t2", "z4t3") thresh$free[,3] <- c(TRUE, TRUE, FALSE) thresh$values[,3] <- c(-1, 1, NA) thresh$labels[,3] <- c("z5t1", "z5t2", NA) model1 <- mxModel("loadData", loadings, resid, means, thresh, mxAlgebra(t(L) %*% L + U, name="C"), mxFitFunctionWLS(), mxExpectationNormal("C", "M", dimnames=names(jointdata)[1:5], thresholds="T", threshnames=c("z2", "z4", "z5"))) result1 <- c() numSets <- 8 dsets <- list() for (dx in 1:numSets) { df <- data.frame(z1=jointdata$z1 + rnorm(nrow(jointdata), mean=dx/10, sd=.1), z2=ordered(sample.int(2, nrow(jointdata), replace=TRUE)-1L)) df$z1[sample.int(nrow(jointdata), sample(20,1))] <- NA df$z2[sample.int(nrow(jointdata), sample(20,1))] <- NA dsets[[dx]] <- df for (cx in paste0('z',3:5)) df[[cx]] <- jointdata[[cx]] model2 <- mxModel(model1, mxData(df, 'raw'), mxFitFunctionWLS()) model2 <- mxRun(model2) result1 <- rbind(result1, c(coef(model2), model2$output$standardErrors)) } flat <- t(sapply(unlist(dsets, recursive=FALSE), as.character)) colnames(flat) <- paste0("p",1:ncol(flat)) rownames(flat) <- apply(expand.grid(k=c('c','o'),n=1:numSets), 1, paste0, collapse="") tdir <- paste0(tempdir(), "/") write.table(flat, file=paste0(tdir, "testCols.csv"), quote=FALSE, row.names = TRUE, col.names=TRUE) model3 <- mxModel( model1, mxData(jointdata, 'raw'), mxComputeLoop(list( LD=mxComputeLoadData( 'loadData', column=paste0('z',1:2), skip.rows=1, skip.cols=1, row.names=1, method="oops", path=paste0(tdir, "testCols.csv"), verbose=0L), mxComputeSetOriginalStarts(), mxComputeGradientDescent(), mxComputeStandardError(), CPT=mxComputeCheckpoint(toReturn=TRUE, standardErrors = TRUE) ), i=1:numSets)) expect_error(mxRun(model3), "unknown provider") model3$compute$steps[['LD']]$method <- 'csv' model3Fit <- mxRun(model3) omxCheckEquals(model3Fit$compute$steps[['LD']]$debug$loadCounter, 1L) expect_equal(model3Fit$data$observedStats[['numEstimatedEntries']], 57) discardCols <- c("OpenMxEvals", "iterations", "timestamp", "MxComputeLoop1", "objective", "statusCode", "fitUnits", 'testCols.csv:z1', 'testCols.csv:z2') log <- model3Fit$compute$steps[['CPT']]$log omxCheckEquals(log[['testCols.csv:z1']], paste0('c', 1:numSets)) omxCheckEquals(log[['testCols.csv:z2']], paste0('o', 1:numSets)) for (col in discardCols) log[[col]] <- NULL lmad <- -log10(apply(abs(as.matrix(log - result1)), 2, max)) # names(lmad) <- c() # cat(deparse(floor(lmad))) # print(lmad - 7) omxCheckTrue(all(lmad - 7 > 0)) # -------------- totalCol <- ncol(flat) + length(letters) lcol <- sample.int(totalCol, length(letters)) #print(sort(lcol)) flatMap <- (1:totalCol)[-lcol] flat2 <- matrix("", nrow(flat), totalCol) flat2[,lcol] <- letters flat2[,flatMap] <- flat write.table(flat2, file=paste0(tdir, "testCols.csv"), quote=FALSE, row.names = TRUE, col.names=TRUE) model3$compute$steps$LD$rowFilter <- 1:totalCol %in% lcol model4Fit <- mxRun(model3) log <- model4Fit$compute$steps[['CPT']]$log for (col in discardCols) log[[col]] <- NULL lmad <- -log10(apply(abs(as.matrix(log - result1)), 2, max)) # names(lmad) <- c() # cat(deparse(floor(lmad))) # print(lmad - 7) omxCheckTrue(all(lmad - 7 > 0))