# OncoDataSets - A Comprehensive Collection of Cancer Types and Cancer-related DataSets # Version 0.1.0 # Copyright (C) 2024 Renzo Caceres Rossi # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # MiceDeathRadiation_df data set library(testthat) # Test dataset structure and class test_that("MiceDeathRadiation_df loads correctly and has the expected structure", { expect_s3_class(MiceDeathRadiation_df, "data.frame") # Check if it's a data frame expect_equal(nrow(MiceDeathRadiation_df), 177) # Check number of rows expect_equal(ncol(MiceDeathRadiation_df), 4) # Check number of columns expect_equal(names(MiceDeathRadiation_df), c("type", "cause", "status", "y")) # Check column names }) # Test data types of columns test_that("MiceDeathRadiation_df has correct column types", { expect_true(is.factor(MiceDeathRadiation_df$type)) # Check if 'type' is a factor expect_true(is.factor(MiceDeathRadiation_df$cause)) # Check if 'cause' is a factor expect_true(is.numeric(MiceDeathRadiation_df$status)) # Check if 'status' is numeric expect_true(is.numeric(MiceDeathRadiation_df$y)) # Check if 'y' is numeric }) # Test for missing values in critical columns test_that("MiceDeathRadiation_df reports NA values in the columns", { n_na_type <- sum(is.na(MiceDeathRadiation_df$type)) n_na_cause <- sum(is.na(MiceDeathRadiation_df$cause)) n_na_status <- sum(is.na(MiceDeathRadiation_df$status)) n_na_y <- sum(is.na(MiceDeathRadiation_df$y)) expect_true(n_na_type == 0, info = paste("Found", n_na_type, "NA values in type")) expect_true(n_na_cause == 0, info = paste("Found", n_na_cause, "NA values in cause")) expect_true(n_na_status == 0, info = paste("Found", n_na_status, "NA values in status")) expect_true(n_na_y == 0, info = paste("Found", n_na_y, "NA values in y")) }) # Test for valid value ranges in the factors test_that("MiceDeathRadiation_df has valid value ranges", { # Test for 'type' - check if it contains the correct levels type_values <- levels(MiceDeathRadiation_df$type) expect_true(all(type_values %in% c("Germ-free", "Ordinary")), info = paste("Invalid values found in 'type'. Found:", paste(type_values, collapse = ", "))) # Test for 'cause' - check if it contains the correct levels cause_values <- levels(MiceDeathRadiation_df$cause) expect_true(all(cause_values %in% c("other", "sarcoma", "thymic")), info = paste("Invalid values found in 'cause'. Found:", paste(cause_values, collapse = ", "))) }) # Test to verify dataset immutability test_that("MiceDeathRadiation_df remains unchanged after tests", { original_dataset <- MiceDeathRadiation_df # Create a copy of the original dataset # Run some example tests sum(is.na(MiceDeathRadiation_df$type)) # Ensure no NAs in 'type' sum(is.na(MiceDeathRadiation_df$cause)) # Ensure no NAs in 'cause' sum(is.na(MiceDeathRadiation_df$status)) # Ensure no NAs in 'status' sum(is.na(MiceDeathRadiation_df$y)) # Ensure no NAs in 'y' # Verify the dataset hasn't changed expect_identical(original_dataset, MiceDeathRadiation_df) expect_equal(nrow(original_dataset), nrow(MiceDeathRadiation_df)) expect_equal(ncol(original_dataset), ncol(MiceDeathRadiation_df)) expect_equal(names(original_dataset), names(MiceDeathRadiation_df)) })