test_that("summariseTrend - episode works", { skip_on_cran() # Load mock database ---- cdm <- cdmEunomia() # Check all tables work ---- expect_true(inherits(summariseTrend(cdm), "summarised_result")) expect_equal(summariseTrend(cdm), omopgenerics::emptySummarisedResult(), ignore_attr = TRUE) expect_no_error(x <- summariseTrend(cdm, episode = "drug_exposure", event = "condition_occurrence", interval = "months")) expect_true(inherits(x, "summarised_result")) # Check inputs ---- x <- summariseTrend(cdm, episode = "observation_period", interval = "years") |> dplyr::filter(additional_level == "1909-01-01 to 1909-12-31", estimate_name == "count") |> dplyr::pull("estimate_value") |> as.numeric() y <- cdm$observation_period |> getYear(date = "observation_period_start_date", name = "start_year") |> getYear(date = "observation_period_end_date", name = "end_year") |> dplyr::filter(start_year <= 1909, end_year >= 1909) |> dplyr::tally() |> dplyr::pull("n") |> as.numeric() expect_equal(x, y) x <- summariseTrend(cdm, episode = "observation_period", interval = "years") expect_equal(x |> dplyr::filter(additional_level != "overall") |> dplyr::pull("additional_name") |> unique(), "time_interval") x <- summariseTrend(cdm, episode = "drug_exposure", interval = "overall") expect_equal(x |> dplyr::filter(additional_level == "overall") |> dplyr::pull("additional_name") |> unique(), "overall") x <- summariseTrend(cdm, episode = "drug_exposure", interval = "years") |> dplyr::filter(additional_level == c("1936-01-01 to 1936-12-31"), estimate_name == "count") |> dplyr::pull("estimate_value") |> as.numeric() y <- cdm$drug_exposure |> getYear(date = "drug_exposure_start_date", name = "start") |> getYear(date = "drug_exposure_end_date", name = "end") |> dplyr::filter((.data$start < 1936 & .data$end >= 1936) | (.data$start >= 1936 & .data$start <= 1936)) |> dplyr::tally() |> dplyr::pull("n") |> as.numeric() expect_equal(x, y) x <- summariseTrend(cdm, episode = "observation_period", interval = "years") |> dplyr::filter(additional_level == c("1936-01-01 to 1936-12-31"), estimate_name == "count") |> dplyr::pull("estimate_value") |> as.numeric() y <- cdm$observation_period |> getYear(date = "observation_period_start_date", name = "start") |> getYear(date = "observation_period_end_date", name = "end") |> dplyr::filter((.data$start < 1936 & .data$end >= 1936) | (.data$start >= 1936 & .data$start <= 1936)) |> dplyr::tally() |> dplyr::pull("n") |> as.numeric() expect_equal(x, y) x <- summariseTrend(cdm, episode = "observation_period", output = "person", interval = "years") |> dplyr::filter(additional_level == c("1996-01-01 to 1996-12-31"), estimate_name == "count") |> dplyr::pull("estimate_value") |> as.numeric() y <- cdm$observation_period |> getYear(date = "observation_period_start_date", name = "start") |> getYear(date = "observation_period_end_date", name = "end") |> dplyr::filter((.data$start < 1996 & .data$end >= 1996) | (.data$start >= 1996 & .data$start <= 1996)) |> dplyr::distinct(.data$person_id) |> dplyr::tally() |> dplyr::pull("n") |> as.numeric() expect_equal(x, y) x <- summariseTrend(cdm, episode = "condition_occurrence", interval = "years") |> dplyr::filter(additional_level == c("1998-01-01 to 1998-12-31"), estimate_name == "count") |> dplyr::pull("estimate_value") |> as.numeric() y <- cdm$condition_occurrence |> getYear(date = "condition_start_date", name = "start") |> getYear(date = "condition_end_date", name = "end") |> dplyr::filter((.data$start < 1998 & .data$end >= 1998) | (.data$start == 1998)) |> dplyr::tally() |> dplyr::pull("n") |> as.numeric() expect_equal(x, y) x <- summariseTrend(cdm, episode = "observation_period", interval = "months") |> dplyr::filter(additional_level == "1942-03-01 to 1942-03-31", estimate_name == "count") |> dplyr::pull("estimate_value") |> as.numeric() y <- cdm$observation_period |> dplyr::filter( (observation_period_start_date < as.Date("1942-03-01") & observation_period_end_date >= as.Date("1942-03-01")) | (observation_period_start_date >= as.Date("1942-03-01") & observation_period_start_date <= as.Date("1942-03-31")) ) |> dplyr::tally() |> dplyr::pull("n") |> as.numeric() expect_equal(x, y) dropCreatedTables(cdm = cdm) }) test_that("summariseTrend - event works", { skip_on_cran() # Load mock database ---- cdm <- cdmEunomia() # Check inputs ---- expect_no_error(inherits(summariseTrend(cdm, event = "observation_period", interval = "months"), "summarised_result")) expect_no_error(summariseTrend(cdm, event = "observation_period")) expect_no_error(summariseTrend(cdm, event = "visit_occurrence")) expect_no_error(summariseTrend(cdm, event = "drug_exposure")) expect_no_error(summariseTrend(cdm, event = "procedure_occurrence")) expect_no_error(summariseTrend(cdm, event = "measurement")) expect_warning(de <- summariseTrend(cdm, event = "death")) checkResultType(de, "summarise_trend") expect_no_error(co <- summariseTrend(cdm, event = "condition_occurrence")) expect_warning(de <- summariseTrend(cdm, event = "device_exposure")) expect_no_error(o <- summariseTrend(cdm, event = "observation")) expect_warning(all <- summariseTrend(cdm, event = c( "condition_occurrence", "device_exposure", "observation" ))) expect_equal(all, dplyr::bind_rows(co, de, o)) # Check inputs ---- expect_true( (summariseTrend(cdm, event = "observation_period", interval = "years") |> dplyr::filter(additional_level == "1963-01-01 to 1963-12-31", estimate_name == "count") |> dplyr::pull("estimate_value") |> as.numeric()) == (cdm$observation_period |> dplyr::ungroup() |> dplyr::mutate(year = clock::get_year(observation_period_start_date)) |> dplyr::filter(year == 1963) |> dplyr::tally() |> dplyr::pull("n")) ) expect_true( summariseTrend(cdm, event = "condition_occurrence", interval = "months") |> dplyr::filter(additional_level == "1961-02-01 to 1961-02-28", estimate_name == "count") |> dplyr::pull("estimate_value") |> as.numeric() == (cdm$condition_occurrence |> dplyr::ungroup() |> dplyr::mutate(year = clock::get_year(condition_start_date)) |> dplyr::mutate(month = clock::get_month(condition_start_date)) |> dplyr::filter(year == 1961, month == 2) |> dplyr::tally() |> dplyr::pull("n")) ) expect_true( (summariseTrend(cdm, event = "condition_occurrence", interval = "months") |> dplyr::filter(additional_level %in% c("1984-01-01 to 1984-01-31", "1984-02-01 to 1984-02-29", "1984-03-01 to 1984-03-31"), estimate_name == "count") |> dplyr::summarise("estimate_value" = sum(as.numeric(estimate_value), na.rm = TRUE)) |> dplyr::pull("estimate_value") |> as.numeric()) == (cdm$condition_occurrence |> dplyr::ungroup() |> dplyr::mutate(year = clock::get_year(condition_start_date)) |> dplyr::mutate(month = clock::get_month(condition_start_date)) |> dplyr::filter(year == 1984, month %in% c(1:3)) |> dplyr::tally() |> dplyr::pull("n")) ) expect_true( (summariseTrend(cdm, event = "drug_exposure", interval = "years") |> dplyr::filter(additional_level %in% c( "1981-01-01 to 1981-12-31", "1982-01-01 to 1982-12-31", "1983-01-01 to 1983-12-31", "1984-01-01 to 1984-12-31", "1985-01-01 to 1985-12-31", "1986-01-01 to 1986-12-31", "1987-01-01 to 1987-12-31", "1988-01-01 to 1988-12-31" ), estimate_name == "count") |> dplyr::summarise("estimate_value" = sum(as.numeric(.data$estimate_value), na.rm = TRUE)) |> dplyr::pull("estimate_value") |> as.numeric()) == (cdm$drug_exposure |> dplyr::ungroup() |> dplyr::mutate(year = clock::get_year(drug_exposure_start_date)) |> dplyr::filter(year %in% c(1981:1988)) |> dplyr::tally() |> dplyr::pull("n")) ) # Check result type result <- summariseTrend(cdm, event = "observation_period", interval = "months") checkResultType(result, "summarise_trend") dropCreatedTables(cdm = cdm) }) test_that("check sex argument works", { skip_on_cran() # Load mock database ---- cdm <- cdmEunomia() # Check overall x <- summariseTrend(cdm, episode = "observation_period", interval = "years", sex = TRUE) expect_equal(x |> dplyr::filter(additional_level != "overall") |> dplyr::pull("additional_name") |> unique(), "time_interval") x <- summariseTrend(cdm, episode = "observation_period", interval = "overall") expect_equal(x |> dplyr::filter(additional_level == "overall") |> dplyr::pull("additional_name") |> unique(), "overall") x <- summariseTrend(cdm, event = "visit_occurrence", interval = "years", sex = TRUE) |> dplyr::filter(strata_level %in% c("Male", "Female"), additional_level == "1923-01-01 to 1923-12-31", estimate_name == "count") |> dplyr::pull(estimate_value) |> as.numeric() |> sum() y <- summariseTrend(cdm, event = "visit_occurrence", interval = "years", sex = TRUE) |> dplyr::filter(strata_level %in% c("overall"), additional_level == "1923-01-01 to 1923-12-31", estimate_name == "count") |> dplyr::pull(estimate_value) |> as.numeric() expect_equal(x, y) y <- cdm$visit_occurrence |> dplyr::filter(visit_start_date < as.Date("1923-01-01") & visit_end_date >= as.Date("1923-01-01") | (visit_start_date >= as.Date("1923-01-01") & visit_start_date <= as.Date("1923-12-31"))) |> dplyr::tally() |> dplyr::pull() |> as.numeric() expect_equal(x, y) # Check a random group x <- summariseTrend(cdm, episode = "observation_period", interval = "years", sex = TRUE) |> dplyr::filter(strata_level == "Male", additional_level == "1915-01-01 to 1915-12-31", estimate_name == "count") |> dplyr::pull(estimate_value) |> as.numeric() y <- cdm$observation_period |> PatientProfiles::addSexQuery() |> dplyr::filter(sex == "Male") |> dplyr::filter(observation_period_start_date < as.Date("1915-01-01") & observation_period_end_date >= as.Date("1915-01-01") | (observation_period_start_date >= as.Date("1915-01-01") & observation_period_start_date <= as.Date("1915-12-31"))) |> dplyr::tally() |> dplyr::pull() |> as.numeric() expect_equal(x, y) x <- summariseTrend(cdm, event = "observation_period", interval = "years", sex = TRUE) |> dplyr::filter(strata_level == "Male", additional_level == "1918-01-01 to 1918-12-31", estimate_name == "percentage") |> dplyr::pull(estimate_value) y <- (cdm$observation_period |> PatientProfiles::addSexQuery() |> dplyr::filter(sex == "Male") |> dplyr::filter(observation_period_start_date >= as.Date("1918-01-01") & observation_period_start_date <= as.Date("1918-12-31")) |> dplyr::tally() |> dplyr::pull()) / (cdm[["observation_period"]] |> dplyr::tally() |> dplyr::pull() |> as.numeric()) * 100 expect_equal(x, sprintf("%.2f", y)) expect_no_error(x <- summariseTrend(cdm, event = "observation_period", output = "person", interval = "years", sex = TRUE)) x <- x |> dplyr::filter(strata_level == "Male", additional_level == "1918-01-01 to 1918-12-31", estimate_name == "percentage") |> dplyr::pull(estimate_value) y <- cdm$observation_period |> dplyr::inner_join(cdm[["person"]] |> dplyr::select("person_id"), by = "person_id") |> PatientProfiles::addSexQuery() |> dplyr::filter(sex == "Male") |> dplyr::filter(observation_period_start_date >= as.Date("1918-01-01") & observation_period_start_date <= as.Date("1918-12-31")) |> dplyr::summarise(p = dplyr::n_distinct(.data$person_id)) |> dplyr::pull() y <- y / (cdm[["person"]] |> dplyr::tally() |> dplyr::pull()) * 100 expect_equal(x, sprintf("%.2f", y)) dropCreatedTables(cdm = cdm) }) test_that("check ageGroup argument works", { skip_on_cran() # Load mock database ---- cdm <- cdmEunomia() expect_no_error(summariseTrend(cdm, episode = "observation_period", event = "drug_exposure", ageGroup = list(c(0, 20), c(21, Inf)))) x <- summariseTrend(cdm, episode = "observation_period", interval = "years", ageGroup = list("<=20" = c(0, 20), ">20" = c(21, Inf))) |> dplyr::filter(additional_level == "1928-01-01 to 1928-12-31", estimate_name == "count", strata_level == "<=20") |> dplyr::pull(estimate_value) |> as.numeric() y <- cdm$observation_period |> dplyr::filter(observation_period_start_date < as.Date("1928-01-01") & observation_period_end_date >= as.Date("1928-01-01") | (observation_period_start_date >= as.Date("1928-01-01") & observation_period_start_date <= as.Date("1928-12-31"))) |> dplyr::mutate("start" = as.Date("1928-01-01"), "end" = as.Date("1928-12-31")) |> PatientProfiles::addAgeQuery(indexDate = "start", ageName = "age_start") |> dplyr::mutate(age_end = age_start + 10) |> dplyr::filter((age_end <= 20 & age_end >= 0) | (age_start >= 0 & age_start <= 20)) |> dplyr::tally() |> dplyr::pull() |> as.numeric() expect_equal(x, y) x <- summariseTrend(cdm, event = "observation_period", interval = "years", ageGroup = list("<=20" = c(0, 20), ">20" = c(21, Inf))) |> dplyr::filter(additional_level == "1928-01-01 to 1928-12-31", estimate_name == "count", strata_level == "<=20") |> dplyr::pull(estimate_value) |> as.numeric() y <- cdm$observation_period |> dplyr::filter(observation_period_start_date >= as.Date("1928-01-01") & observation_period_start_date <= as.Date("1928-12-31")) |> dplyr::mutate("start" = as.Date("1928-01-01"), "end" = as.Date("1928-12-31")) |> PatientProfiles::addAgeQuery(indexDate = "start", ageName = "age_start") |> dplyr::mutate(age_end = age_start + 10) |> dplyr::filter((age_end <= 20 & age_end >= 0) | (age_start >= 0 & age_start <= 20)) |> dplyr::tally() |> dplyr::pull() |> as.numeric() expect_equal(x, y) expect_no_error(x <- summariseTrend(cdm, episode = "observation_period", output = "person", ageGroup = list(c(0, 20), c(21, Inf)), interval = "years")) x <- x |> dplyr::filter(additional_level == "1928-01-01 to 1928-12-31", estimate_name == "count", strata_level == "0 to 20") |> dplyr::pull(estimate_value) |> as.numeric() y <- cdm$observation_period |> dplyr::filter(observation_period_start_date < as.Date("1928-01-01") & observation_period_end_date >= as.Date("1928-01-01") | (observation_period_start_date >= as.Date("1928-01-01") & observation_period_start_date <= as.Date("1928-12-31"))) |> dplyr::mutate("start" = as.Date("1928-01-01"), "end" = as.Date("1928-12-31")) |> PatientProfiles::addAgeQuery(indexDate = "start", ageName = "age_start") |> dplyr::mutate(age_end = age_start + 10) |> dplyr::filter((age_end <= 20 & age_end >= 0) | (age_start >= 0 & age_start <= 20)) |> dplyr::summarise(dplyr::n_distinct(person_id)) |> dplyr::pull() expect_equal(x, y) expect_no_error(x <- summariseTrend(cdm, event = "observation_period", output = "person", ageGroup = list(c(0, 20), c(21, Inf)), interval = "years")) x <- x |> dplyr::filter(additional_level == "1928-01-01 to 1928-12-31", estimate_name == "count", strata_level == "0 to 20") |> dplyr::pull("estimate_value") |> as.numeric() y <- cdm$observation_period |> dplyr::filter(observation_period_start_date >= as.Date("1928-01-01") & observation_period_start_date <= as.Date("1928-12-31")) |> dplyr::mutate("start" = as.Date("1928-01-01"), "end" = as.Date("1928-12-31")) |> PatientProfiles::addAgeQuery(indexDate = "start", ageName = "age_start") |> dplyr::mutate(age_end = age_start + 10) |> dplyr::filter((age_end <= 20 & age_end >= 0) | (age_start >= 0 & age_start <= 20)) |> dplyr::summarise(dplyr::n_distinct(person_id)) |> dplyr::pull() |> as.numeric() expect_equal(x, y) dropCreatedTables(cdm = cdm) }) test_that("check person-days output works", { skip_on_cran() # Load mock database ---- cdm <- cdmEunomia() # check value x <- summariseTrend(cdm, episode = "observation_period", interval = "years", output = c("record", "person-days"), ageGroup = NULL, sex = FALSE) |> dplyr::filter(variable_name == "Person-days", additional_level == "1970-01-01 to 1970-12-31", estimate_type == "integer") |> dplyr::pull("estimate_value") |> as.numeric() y <- cdm$observation_period |> dplyr::collect() |> dplyr::filter(observation_period_start_date < as.Date("1970-01-01") & observation_period_end_date >= as.Date("1970-01-01") | (observation_period_start_date >= as.Date("1970-01-01") & observation_period_start_date <= as.Date("1970-12-31"))) |> dplyr::mutate("start_date" = as.Date("1970-01-01"), "end_date" = as.Date("1970-12-31")) |> dplyr::mutate( "start_date" = pmax(start_date, observation_period_start_date, na.rm = TRUE), "end_date" = pmin(end_date, observation_period_end_date, na.rm = TRUE) ) |> datediffDays(start = "start_date", end = "end_date", name = "days", offset = 1) |> dplyr::summarise(n = sum(days, na.rm = TRUE)) |> dplyr::pull("n") |> as.numeric() expect_equal(x, y) # Check percentage den <- cdm$observation_period |> datediffDays(start = "observation_period_start_date", end = "observation_period_end_date", name = "days", offset = 1) |> dplyr::summarise(n = sum(days, na.rm = TRUE)) |> dplyr::pull("n") |> as.numeric() x <- summariseTrend(cdm, episode = "observation_period", interval = "years", output = c("record", "person-days")) |> dplyr::filter(variable_name == "Person-days", additional_level == "1964-01-01 to 1964-12-31", estimate_type == "percentage") |> dplyr::pull("estimate_value") y <- cdm$observation_period |> dplyr::collect() |> dplyr::filter(observation_period_start_date < as.Date("1964-01-01") & observation_period_end_date >= as.Date("1964-01-01") | (observation_period_start_date >= as.Date("1964-01-01") & observation_period_start_date <= as.Date("1964-12-31"))) |> dplyr::mutate("start_date" = as.Date("1964-01-01"), "end_date" = as.Date("1964-12-31")) |> dplyr::mutate( "start_date" = pmax(start_date, observation_period_start_date, na.rm = TRUE), "end_date" = pmin(end_date, observation_period_end_date, na.rm = TRUE) ) |> datediffDays(start = "start_date", end = "end_date", name = "days", offset = 1) |> dplyr::summarise(n = sum(days, na.rm = TRUE)) |> dplyr::pull("n") |> as.numeric() / den * 100 expect_equal(x, sprintf("%.2f", y)) # Check sex stratified x <- summariseTrend(cdm, episode = "observation_period", interval = "years", output = "person-days", sex = TRUE) |> dplyr::filter(variable_name == "Person-days", additional_level == "1964-01-01 to 1964-12-31", estimate_type == "integer") |> dplyr::filter(strata_level == "overall") |> dplyr::pull("estimate_value") |> as.numeric() y <- summariseTrend(cdm, episode = "observation_period", interval = "years", output = "person-days", sex = TRUE) |> dplyr::filter(variable_name == "Person-days", additional_level == "1964-01-01 to 1964-12-31", estimate_type == "integer") |> dplyr::filter(strata_level != "overall") |> dplyr::pull("estimate_value") |> as.numeric() |> sum() expect_equal(x, y) # Check age stratified x <- summariseTrend(cdm, episode = "drug_exposure", interval = "years", output = "person-days", ageGroup = list("<=20" = c(0, 20), ">20" = c(21, Inf))) |> dplyr::filter(variable_name == "Person-days", additional_level == "2000-01-01 to 2000-12-31", estimate_type == "integer") |> dplyr::filter(strata_level == "overall") |> dplyr::pull("estimate_value") |> as.numeric() y <- summariseTrend(cdm, episode = "drug_exposure", interval = "years", output = "person-days", sex = TRUE) |> dplyr::filter(variable_name == "Person-days", additional_level == "2000-01-01 to 2000-12-31", estimate_type == "integer") |> dplyr::filter(strata_level != "overall") |> dplyr::pull("estimate_value") |> as.numeric() |> sum() expect_equal(x, y) expect_message(x <- summariseTrend(cdm, event = "observation_period", output = "person-days")) expect_equal(x, omopgenerics::emptySummarisedResult(), ignore_attr = TRUE) expect_equal(summariseTrend(cdm, event = "observation_period", output = c("record", "person-days")), summariseTrend(cdm, event = "observation_period", output = c("record"))) dropCreatedTables(cdm = cdm) }) test_that("dateRange argument works", { skip_on_cran() # Load mock database ---- cdm <- cdmEunomia() # tables created startNames <- omopgenerics::listSourceTables(cdm) expect_no_error(summariseTrend(cdm, episode = "observation_period", dateRange = as.Date(c("1940-01-01", "2018-01-01")))) expect_message(x <- summariseTrend(cdm, episode = "observation_period", dateRange = as.Date(c("1940-01-01", "2024-01-01")))) observationRange <- cdm$observation_period |> dplyr::summarise( minobs = min(.data$observation_period_start_date, na.rm = TRUE), maxobs = max(.data$observation_period_end_date, na.rm = TRUE) ) expect_no_error(y <- summariseTrend(cdm, episode = "observation_period", dateRange = as.Date(c("1940-01-01", observationRange |> dplyr::pull("maxobs"))))) expect_equal(x, y, ignore_attr = TRUE) expect_false(settings(x)$study_period_end == settings(y)$study_period_end) expect_error(summariseTrend(cdm, episode = "observation_period", dateRange = as.Date(c("2015-01-01", "2014-01-01")))) expect_warning(z <- summariseTrend(cdm, episode = "observation_period", dateRange = as.Date(c("2020-01-01", "2021-01-01")))) expect_equal(z, omopgenerics::emptySummarisedResult(), ignore_attr = TRUE) expect_equal(summariseTrend(cdm, episode = "observation_period", dateRange = as.Date(c("1940-01-01", NA))), y, ignore_attr = TRUE) checkResultType(z, "summarise_trend") x <- summariseTrend(cdm, episode = "observation_period", dateRange = as.Date(c("1940-01-01", "1940-12-31"))) |> dplyr::filter(estimate_name == "count") |> dplyr::pull(estimate_value) y <- summariseTrend(cdm, event = "observation_period", dateRange = as.Date(c("1940-01-01", "1940-12-31"))) |> dplyr::filter(estimate_name == "count") |> dplyr::pull(estimate_value) expect_false(x == y) expect_no_error(summariseTrend(cdm, event = "condition_occurrence", dateRange = as.Date(c("2012-01-01", "2018-01-01")))) expect_message(x <- summariseTrend(cdm, event = "drug_exposure", dateRange = as.Date(c("2012-01-01", "2025-01-01")))) observationRange <- cdm$observation_period |> dplyr::summarise( minobs = min(.data$observation_period_start_date, na.rm = TRUE), maxobs = max(.data$observation_period_end_date, na.rm = TRUE) ) expect_no_error(y <- summariseTrend(cdm, event = "drug_exposure", dateRange = as.Date(c("2012-01-01", observationRange |> dplyr::pull("maxobs"))))) expect_equal(x, y, ignore_attr = TRUE) expect_false(settings(x)$study_period_end == settings(y)$study_period_end) expect_error(summariseTrend(cdm, event = "drug_exposure", dateRange = as.Date(c("2015-01-01", "2014-01-01")))) expect_message(expect_warning(z <- summariseTrend(cdm, event = "drug_exposure", dateRange = as.Date(c("2020-01-01", "2021-01-01"))))) expect_equal(z, omopgenerics::emptySummarisedResult(), ignore_attr = TRUE) expect_equal(summariseTrend(cdm, event = "drug_exposure", dateRange = as.Date(c("2012-01-01", NA))), y, ignore_attr = TRUE) expect_no_error(summariseTrend(cdm, "observation_period", interval = "years", dateRange = as.Date(c("1950-01-01", NA)) )) results <- summariseTrend(cdm, episode = "observation_period", event = "drug_exposure", output = c("age", "sex", "record", "person-days", "person"), interval = "years", sex = TRUE, ageGroup = list( c(0, 17), c(18, 65), c(66, 100) ), dateRange = as.Date(c("2012-01-01", "2018-01-01")) ) endNames <- omopgenerics::listSourceTables(cdm) expect_true(length(setdiff(endNames, startNames)) == 0) dropCreatedTables(cdm = cdm) }) test_that("age and sex output work", { skip_on_cran() # Load mock database ---- cdm <- cdmEunomia() expect_no_error(x <- summariseTrend(cdm, episode = "observation_period", output = "age")) expect_equal(cdm$observation_period |> PatientProfiles::addAgeQuery(indexDate = "observation_period_start_date") |> dplyr::pull("age") |> stats::median(), as.numeric(x$estimate_value)) expect_no_error(y <- summariseTrend(cdm, episode = "observation_period", output = "age", sex = TRUE, ageGroup = list(c(0, 50)))) y <- y |> omopgenerics::splitStrata() |> dplyr::filter(.data$sex == "Female" & .data$age_group == "0 to 50") |> dplyr::pull("estimate_value") |> as.numeric() z <- cdm$observation_period |> PatientProfiles::addDemographicsQuery(indexDate = "observation_period_start_date", age = TRUE, ageGroup = list(c(0, 50)), sex = TRUE, priorObservation = FALSE, futureObservation = TRUE) |> dplyr::filter(.data$sex == "Female" & .data$age_group == "0 to 50") |> dplyr::pull("age") |> stats::median() expect_equal(y, z) expect_no_error(y <- summariseTrend(cdm, episode = "observation_period", output = "age", sex = TRUE, ageGroup = list(c(0, 50)), interval = "years")) y <- y |> omopgenerics::splitAll() |> dplyr::filter(.data$time_interval == "2019-01-01 to 2019-12-31" & .data$sex == "Female" & .data$age_group == "0 to 50") |> dplyr::pull("estimate_value") |> as.numeric() z <- cdm$observation_period |> dplyr::filter(observation_period_start_date < as.Date("2019-01-01") & observation_period_end_date >= as.Date("2019-01-01") | (observation_period_start_date >= as.Date("2019-01-01") & observation_period_start_date <= as.Date("2019-12-31"))) |> dplyr::mutate("start_date" = as.Date("2019-01-01")) |> dplyr::mutate("index_date" = dplyr::if_else( .data$start_date <= .data$observation_period_start_date, .data$observation_period_start_date, .data$start_date )) |> PatientProfiles::addDemographicsQuery(indexDate = "index_date", age = TRUE, ageGroup = list(c(0, 50)), sex = TRUE, priorObservation = FALSE, futureObservation = TRUE) |> dplyr::filter(.data$sex == "Female" & .data$age_group == "0 to 50") |> dplyr::pull("age") |> stats::median() expect_equal(y, z) expect_no_error(x <- summariseTrend(cdm, episode = "observation_period", output = "sex")) y <- cdm$observation_period |> PatientProfiles::addSexQuery() |> dplyr::collect() |> dplyr::mutate("n_tot" = dplyr::n_distinct(.data$person_id)) |> dplyr::filter(.data$sex == "Female") |> dplyr::summarise("n_females" = dplyr::n_distinct(.data$person_id), n_tot = dplyr::first(.data$n_tot)) expect_equal(sprintf("%.2f", 100 * y$n_females / y$n_tot), x |> dplyr::filter(estimate_type == "percentage") |> dplyr::pull(estimate_value)) expect_equal(x, summariseTrend(cdm, episode = "observation_period", sex = TRUE, output = "sex")) expect_no_error(y <- summariseTrend(cdm, episode = "observation_period", output = "sex", ageGroup = list(c(0, 50)), interval = "years")) y <- y |> omopgenerics::splitAll() |> dplyr::filter(.data$time_interval == "2019-01-01 to 2019-12-31" & .data$age_group == "0 to 50" & .data$estimate_type == "percentage") |> dplyr::pull("estimate_value") z <- cdm$observation_period |> dplyr::inner_join( cdm$person |> dplyr::filter(.data$gender_concept_id %in% c(8507, 8532)), by = "person_id" ) ntot <- z |> dplyr::summarise(n_tot = dplyr::n_distinct(.data$person_id)) |> dplyr::pull() z <- z |> dplyr::mutate("n_tot" = .env$ntot) |> dplyr::mutate("start_date" = as.Date("2019-01-01")) |> dplyr::filter(observation_period_start_date < as.Date("2019-01-01") & observation_period_end_date >= as.Date("2019-01-01") | (observation_period_start_date >= as.Date("2019-01-01") & observation_period_start_date <= as.Date("2019-12-31"))) |> dplyr::mutate("index_date" = dplyr::if_else( .data$start_date <= .data$observation_period_start_date, .data$observation_period_start_date, .data$start_date )) |> PatientProfiles::addDemographicsQuery(indexDate = "index_date", age = TRUE, ageGroup = list(c(0, 50)), sex = TRUE, priorObservation = FALSE, futureObservation = TRUE) |> dplyr::filter(.data$age_group == "0 to 50" & .data$sex == "Female") |> dplyr::collect() |> dplyr::summarise("n_females" = dplyr::n_distinct(.data$person_id), n_tot = dplyr::first(.data$n_tot)) expect_equal(sprintf("%.2f", 100 * z$n_females / z$n_tot), y) ### event expect_no_error(x <- summariseTrend(cdm, event = "observation_period", output = "age")) expect_equal(cdm$observation_period |> PatientProfiles::addAgeQuery(indexDate = "observation_period_start_date") |> dplyr::pull("age") |> stats::median(), as.numeric(x$estimate_value)) expect_no_error(y <- summariseTrend(cdm, event = "observation_period", output = "age", sex = TRUE, ageGroup = list(c(0, 50)))) y <- y |> omopgenerics::splitStrata() |> dplyr::filter(.data$sex == "Female" & .data$age_group == "0 to 50") |> dplyr::pull("estimate_value") |> as.numeric() z <- cdm$observation_period |> PatientProfiles::addDemographicsQuery(indexDate = "observation_period_start_date", age = TRUE, ageGroup = list(c(0, 50)), sex = TRUE, priorObservation = FALSE, futureObservation = TRUE) |> dplyr::filter(.data$sex == "Female" & .data$age_group == "0 to 50") |> dplyr::pull("age") |> stats::median() expect_equal(y, z) expect_no_error(y <- summariseTrend(cdm, event = "drug_exposure", output = "age", sex = TRUE, ageGroup = list(c(0, 50)), interval = "years")) y <- y |> omopgenerics::splitAll() |> dplyr::filter(.data$time_interval == "1985-01-01 to 1985-12-31" & .data$sex == "Female" & .data$age_group == "0 to 50") |> dplyr::pull("estimate_value") |> as.numeric() z <- cdm$drug_exposure |> dplyr::filter(drug_exposure_start_date >= as.Date("1985-01-01") & drug_exposure_start_date <= as.Date("1985-12-31")) |> PatientProfiles::addDemographicsQuery(indexDate = "drug_exposure_start_date", age = TRUE, ageGroup = list(c(0, 50)), sex = TRUE, priorObservation = FALSE, futureObservation = TRUE) |> dplyr::filter(.data$sex == "Female" & .data$age_group == "0 to 50") |> dplyr::pull("age") |> stats::median() expect_equal(y, z) expect_no_error(x <- summariseTrend(cdm, event = "drug_exposure", output = "sex")) n_tot <- cdm$drug_exposure |> dplyr::inner_join(cdm[["person"]] |> dplyr::filter(.data$gender_concept_id %in% c(8507, 8532)), by = "person_id") |> dplyr::summarise("n" = dplyr::n_distinct(.data$person_id)) |> dplyr::pull("n") y <- cdm$drug_exposure |> PatientProfiles::addSexQuery() |> dplyr::filter(.data$sex == "Female") |> dplyr::summarise("n_females" = dplyr::n_distinct(.data$person_id)) |> dplyr::collect() expect_equal(sprintf("%.2f", 100 * y$n_females / n_tot), x |> dplyr::filter(estimate_type == "percentage") |> dplyr::pull(estimate_value)) expect_equal(x, summariseTrend(cdm, event = "drug_exposure", sex = TRUE, output = "sex")) expect_no_error(y <- summariseTrend(cdm, event = "condition_occurrence", output = "sex", ageGroup = list(c(0, 50)), interval = "years")) y <- y |> omopgenerics::splitAll() |> dplyr::filter(.data$time_interval == "2019-01-01 to 2019-12-31" & .data$age_group == "0 to 50" & estimate_type == "percentage") |> dplyr::pull("estimate_value") n_tot <- cdm$condition_occurrence |> dplyr::inner_join(cdm[["person"]] |> dplyr::filter(.data$gender_concept_id %in% c(8507, 8532)), by = "person_id") |> dplyr::summarise("n" = dplyr::n_distinct(.data$person_id)) |> dplyr::pull("n") z <- cdm$condition_occurrence |> dplyr::inner_join( cdm$person |> dplyr::filter(.data$gender_concept_id %in% c(8507, 8532)), by = "person_id" ) |> dplyr::filter(condition_start_date >= as.Date("2019-01-01") & condition_start_date <= as.Date("2019-12-31")) |> PatientProfiles::addDemographicsQuery(indexDate = "condition_start_date", age = TRUE, ageGroup = list(c(0, 50)), sex = TRUE, priorObservation = FALSE, futureObservation = FALSE) |> dplyr::filter(.data$age_group == "0 to 50" & .data$sex == "Female") |> dplyr::summarise("n_females" = dplyr::n_distinct(.data$person_id)) |> dplyr::collect() expect_equal(sprintf("%.2f", 100 * z$n_females / n_tot), y) dropCreatedTables(cdm = cdm) }) test_that("overall time interval work", { skip_on_cran() # Load mock database ---- cdm <- cdmEunomia() expect_no_error(x <- summariseTrend(cdm, episode = "observation_period", output = c("record", "person", "sex", "age"), interval = "years")) x <- x |> dplyr::filter(.data$additional_level == "overall" & estimate_type != "percentage") expect_no_error(y <- summariseTrend(cdm, event = "observation_period", output = c("record", "person", "sex", "age"), interval = "years")) y <- y |> dplyr::filter(.data$additional_level == "overall" & estimate_type != "percentage") expect_equal(x, y, ignore_attr = TRUE) records <- cdm$observation_period |> dplyr::tally() |> dplyr::pull(.data$n) person <- cdm$observation_period |> dplyr::distinct(.data$person_id) |> dplyr::tally() |> dplyr::pull(.data$n) sex <- cdm$observation_period |> PatientProfiles::addSexQuery() |> dplyr::filter(.data$sex == "Female") |> dplyr::distinct(.data$person_id) |> dplyr::tally() |> dplyr::pull(.data$n) age <- cdm$observation_period |> PatientProfiles::addAgeQuery(indexDate = "observation_period_start_date") |> dplyr::collect() |> dplyr::summarise(median = stats::median(.data$age, na.rm = TRUE), na.rm = TRUE) |> dplyr::pull("median") expect_equal(x |> dplyr::filter(variable_name == "Number of records") |> dplyr::pull(.data$estimate_value), as.character(records)) expect_equal(x |> dplyr::filter(variable_name == "Number of subjects") |> dplyr::pull(.data$estimate_value), as.character(person)) expect_equal(x |> dplyr::filter(variable_name == "Number of females") |> dplyr::pull(.data$estimate_value), as.character(sex)) expect_equal(x |> dplyr::filter(variable_name == "Age") |> dplyr::pull(.data$estimate_value), as.character(age)) expect_equal(y |> dplyr::filter(variable_name == "Number of records") |> dplyr::pull(.data$estimate_value), as.character(records)) expect_equal(y |> dplyr::filter(variable_name == "Number of subjects") |> dplyr::pull(.data$estimate_value), as.character(person)) expect_equal(y |> dplyr::filter(variable_name == "Number of females") |> dplyr::pull(.data$estimate_value), as.character(sex)) expect_equal(y |> dplyr::filter(variable_name == "Age") |> dplyr::pull(.data$estimate_value), as.character(age)) dropCreatedTables(cdm = cdm) }) test_that("tableTrend() works", { skip_on_cran() # Load mock database ---- cdm <- cdmEunomia() # Check that works ---- expect_no_error(x <- tableTrend(summariseTrend(cdm, event = "condition_occurrence"))) expect_true(inherits(x, "gt_tbl")) expect_no_error(y <- tableTrend(summariseTrend(cdm, episode = "observation_period", event = c( "observation_period", "measurement" )))) expect_true(inherits(y, "gt_tbl")) expect_warning(t <- summariseTrend(cdm, event = "death")) expect_warning(inherits(tableTrend(t), "gt_tbl")) expect_no_error(x <- tableTrend(summariseTrend(cdm, episode = "condition_occurrence"), type = "datatable")) expect_no_error(x <- tableTrend(summariseTrend(cdm, event = "condition_occurrence"), type = "reactable")) expect_no_error(tableTrend(summariseTrend(cdm, event = "condition_occurrence", output = "age"))) expect_no_error(tableTrend(summariseTrend(cdm, episode = "drug_exposure", event = "condition_occurrence", interval = "years", output = c("age", "record"), sex = TRUE))) dropCreatedTables(cdm = cdm) }) test_that("plotTrend() works", { skip_on_cran() # Load mock database ---- cdm <- cdmEunomia() # Check that works ---- expect_no_error(x <- plotTrend(summariseTrend(cdm, event = "condition_occurrence"))) expect_true(inherits(x, "ggplot")) expect_no_error(plotTrend(summariseTrend(cdm, episode = "observation_period"))) expect_no_error(plotTrend(summariseTrend(cdm, episode = "observation_period", output = "age"))) expect_no_error(plotTrend(summariseTrend(cdm, episode = "observation_period", output = c("age", "record")))) expect_no_error(plotTrend(summariseTrend(cdm, episode = "observation_period", output = c("age", "sex")), output = "sex")) expect_warning(plotTrend(summariseTrend(cdm, episode = "condition_occurrence", event = "drug_exposure"), colour = NULL, facet = NULL)) dropCreatedTables(cdm = cdm) }) test_that("argument inObservation works", { skip_on_cran() # Load mock database ---- cdm <- cdmEunomia() expect_equal(summariseTrend(cdm, event = "observation_period", inObservation = TRUE), summariseTrend(cdm, event = "observation_period", inObservation = FALSE)) expect_equal(summariseTrend(cdm, episode = "observation_period", inObservation = TRUE), summariseTrend(cdm, episode = "observation_period", inObservation = FALSE)) expect_equal(summariseTrend(cdm, episode = "observation_period", inObservation = TRUE, interval = "years"), summariseTrend(cdm, episode = "observation_period", inObservation = FALSE, interval = "years")) expect_no_error(result <- summariseTrend(cdm, event = "condition_occurrence", episode = "drug_exposure", inObservation = TRUE, sex = TRUE, output = c("record", "person", "age", "sex", "person-days"))) result <- result |> omopgenerics::splitStrata() |> dplyr::filter(.data$in_observation == TRUE) |> dplyr::select(!"in_observation") |> omopgenerics::uniteStrata(cols = "sex") cdm$condition_occurrence <- cdm$condition_occurrence |> dplyr::inner_join( cdm$observation_period |> dplyr::select("person_id", "obs_start" = "observation_period_start_date", "obs_end" = "observation_period_end_date" ), by = "person_id" ) |> dplyr::filter(.data$condition_start_date >= .data$obs_start & .data$condition_start_date <= .data$obs_end) |> dplyr::select(!c("obs_start", "obs_end")) cdm$drug_exposure <- cdm$drug_exposure |> dplyr::inner_join( cdm$observation_period |> dplyr::select("person_id", "obs_start" = "observation_period_start_date", "obs_end" = "observation_period_end_date" ), by = "person_id" ) |> dplyr::filter(.data$drug_exposure_start_date >= .data$obs_start & .data$drug_exposure_start_date <= .data$obs_end & .data$drug_exposure_end_date >= .data$obs_start & .data$drug_exposure_end_date <= .data$obs_end) |> dplyr::select(!c("obs_start", "obs_end")) expect_no_error(resultInObs <- summariseTrend(cdm, event = "condition_occurrence", episode = "drug_exposure", inObservation = FALSE, sex = TRUE, output = c("record", "person", "age", "sex", "person-days"))) expect_equal(result |> dplyr::filter(.data$estimate_name != "percentage") |> dplyr::arrange(dplyr::across(dplyr::everything())), resultInObs |> dplyr::filter(.data$estimate_name != "percentage") |> dplyr::arrange(dplyr::across(dplyr::everything())), ignore_attr = TRUE) dropCreatedTables(cdm = cdm) })