#Load reference results refRes_file <- testthat::test_path("data","refResults.RData") load(refRes_file) npx_data1.uniqIDs <- npx_data1 %>% mutate(SampleID = paste(SampleID, "_", Index, sep = "")) procData <- npxProcessing_forDimRed(df = npx_data1.uniqIDs, color_g = 'QC_Warning', drop_assays = F, drop_samples = F, verbose = T) #With missing data samples <- sample({npx_data1.uniqIDs$SampleID %>% unique()}, size = {ceiling( (npx_data1.uniqIDs$SampleID %>% unique() %>% length())*.15 )}) npx_data1.uniqIDs_missingData <- npx_data1.uniqIDs %>% mutate(NPX = ifelse(SampleID %in% samples & OlinkID %in% c('OID00482', 'OID00483', 'OID00484', 'OID00485'), NA, NPX)) %>% #These should be removed due to to high missingness mutate(NPX = ifelse(SampleID %in% c('A18_19', 'B8_87') & OlinkID %in% c('OID00562', 'OID01213', 'OID05124'), NA, NPX)) #These should be median imputed w <- testthat::capture_warnings( procData_missingData <- npxProcessing_forDimRed(df = npx_data1.uniqIDs_missingData, color_g = 'QC_Warning', drop_assays = F, drop_samples = F, verbose = T) ) test_that("npxProcessing_forDimRed works", { expect_equal(procData$df_wide %>% arrange(SampleID), ref_results$procData$df_wide %>% arrange(SampleID)) expect_equal(procData$df_wide_matrix[sort(row.names(procData$df_wide_matrix)),], ref_results$procData$df_wide_matrix[sort(row.names(ref_results$procData$df_wide_matrix)),]) expect_null(procData$dropped_assays.na) expect_null(procData$dropped_assays.missingness) #With missing data expect_equal(w, c("There are 4 assay(s) dropped due to high missingness (>10%).", "There are 3 assay(s) that were imputed by their medians.")) expect_equal(procData_missingData$df_wide %>% arrange(SampleID), ref_results$procData_missingData$df_wide %>% arrange(SampleID)) expect_equal(procData_missingData$df_wide_matrix[sort(row.names(procData_missingData$df_wide_matrix)),], ref_results$procData_missingData$df_wide_matrix[sort(row.names(ref_results$procData_missingData$df_wide_matrix)),]) expect_null(procData_missingData$dropped_assays.na) expect_equal(procData_missingData$dropped_assays.missingness, c('OID00482', 'OID00483', 'OID00484', 'OID00485')) }) #Load data with hidden/excluded assays (all NPX=NA) load(file = test_path('data','npx_data_format221010.RData')) load(file = test_path('data','npx_data_format221121.RData')) npx_Check <- suppressWarnings(npxCheck(npx_data_format221010)) test_that("Assays with NA are removed in NPX check", { na_oids<-npx_data_format221010 %>% dplyr::group_by(OlinkID) %>% dplyr::filter(all(is.na(NPX))) %>% dplyr::select(OlinkID) %>% dplyr::distinct() expect_equal(sort(na_oids$OlinkID), sort(npx_Check$all_nas)) }) npx_Check <- suppressWarnings(npxCheck(npx_data_format221121)) test_that("Assays with NA are removed in NPX check", { na_oids<-npx_data_format221121 %>% dplyr::group_by(OlinkID) %>% dplyr::filter(all(is.na(NPX))) %>% dplyr::select(OlinkID) %>% dplyr::distinct() expect_equal(sort(na_oids$OlinkID), sort(npx_Check$all_nas)) }) test_that("No error if missing data from 1st OID",{ skip_if_not(condition = getRversion() >= "4.2.0", message = "Skipping for R < 4.2.0") expect_no_error(suppressWarnings(suppressWarnings(npx_data1.uniqIDs %>% mutate(QC_Warning = ifelse(OlinkID == "OID01216" & stringr::str_detect(SampleID, "2"), "Warn", QC_Warning)) %>% filter(QC_Warning == "Pass") %>% olink_pca_plot()))) expect_no_error(suppressWarnings(suppressWarnings(npx_data1.uniqIDs %>% mutate(QC_Warning = ifelse(OlinkID == "OID01216" & stringr::str_detect(SampleID, "A"), "Warn", QC_Warning)) %>% filter(QC_Warning == "Pass") %>% olink_pca_plot()))) }) # data with SampleQC instead of QC_Warning w2 <- testthat::capture_error( procData_missingData <- npx_data1.uniqIDs %>% dplyr::rename(SampleQC = QC_Warning) %>% npxProcessing_forDimRed(color_g = 'QC_Warning', drop_assays = F, drop_samples = F, verbose = T) ) test_that("npxProcessing_forDimRed does not recognize QC_Warning", { expect_equal(w2, simpleError("In color_g = \"QC_Warning\", QC_Warning was not found. Did you mean color_g = \"SampleQC\"?")) }) # test that npxCheck detects duplicate sample IDs npx_Check <- suppressMessages(npxCheck(npx_data1)) test_that("npxCheck detects duplicate sample IDs.", {expect_equal(npx_Check$duplicate_samples, c("CONTROL_SAMPLE_AS 1", "CONTROL_SAMPLE_AS 2"))}) # npxProcessing_forDimRed snapshot ---------------------------------------- test_that("npxProcessing_forDimRed snapshot", { oids_to_use <- sort(unique(npx_data1$OlinkID))[1:10] sids_to_use <- sort(unique(npx_data1$SampleID))[1:10] df <- npx_data1 %>% filter(SampleID %in% sids_to_use & OlinkID %in% oids_to_use) %>% mutate(SampleID = paste(SampleID, "_", Index, sep = "")) %>% npxProcessing_forDimRed() expect_snapshot_value(df, style = "deparse") })