library(ORION) test_that("Full pipeline with data projection",{ ### load file file <- system.file("extdata", "artificial_2D_alternatives_sd_0.2-0.3.RData", package = "ORION") load(file) ## project the data projectedData <- projectData(dataset=dataset, comb=c(0,5)) ## generate CV fold lists foldList <- generateCVRuns(labels = dataset$labs, ntimes = 10, nfold = 10) ### test-predictionMap tunePareto svm predMap <- predictionMap(data=t(projectedData$data), labels=projectedData$labs, foldList = foldList, parallel = FALSE, learner = "tunePareto", classifier = tunePareto.svm(), kernel='linear') ## test subcascades - keep longest cascades sub <- subcascades(predictionMap=predMap, sets = NULL, thresh=1, size=NA, numSol=1000)[1] class(sub) <- "Subcascades" sets <- rownames(sub[[1]]) simplifiedSub <- list() while(!is.null(sub)){ head <- sub[1] sets <- rownames(head[[1]]) simplifiedSub <- c(simplifiedSub, head) sub <- dropSets(subcascades=sub, sets=sets, ordered = TRUE, neighborhood = "indirect", type = "any", direction="super") } class(simplifiedSub) <- "Subcascades" ### generate dot string graph dot_str <-generateGraphs(subcascade=simplifiedSub, useOldLabels=F, categoricalLabels=NULL) #g <- generateGraphs(subcascade=subArt1_0, useOldLabels=T, numericLabels=0:10, categoricalLabels=letters[1:10]) # with categorical lables #dot(g) expect_type(dot_str, "character") })