testthat::skip_on_cran() set.seed(1) test_that("packages can be loaded properly", { library("NeuralEstimators") library("JuliaConnectoR") expect_equal(1, 1) }) test_that("julia can be called", { x <- juliaEval(' 1 + 1 ') expect_equal(x, 2) }) test_that("Flux.jl is available", { juliaEval(' # Install the package if not already installed using Pkg installed = "Flux" in keys(Pkg.project().dependencies) if !installed Pkg.add("Flux") end using Flux ') expect_equal(1, 1) }) test_that("NeuralEstimators.jl is available", { juliaEval(' # Install the package if not already installed using Pkg installed = "NeuralEstimators" in keys(Pkg.project().dependencies) if !installed Pkg.add(url = "https://github.com/msainsburydale/NeuralEstimators.jl") end using NeuralEstimators ') expect_equal(1, 1) }) test_that("encodedata() is working", { Z <- matrix(c(1, 2, NA, NA, 5, 6, 7, NA, 9), nrow = 3) UW <- encodedata(Z) UW <- encodedata(list(Z, Z)) expect_equal(length(UW), 2) }) #TODO why is this failing on CI but not on my computer? # test_that("spatialgraph() is working", { # # Number of replicates and spatial dimension # m <- 5 # # # Spatial locations fixed for all replicates # n <- 100 # S <- matrix(runif(n * 2), n, 2) # Z <- matrix(runif(n * m), n, m) # g <- spatialgraph(S, Z) # # # Spatial locations varying between replicates # n <- sample(50:100, m, replace = TRUE) # S <- lapply(n, function(ni) matrix(runif(ni * 2), ni, 2)) # Z <- lapply(n, function(ni) runif(ni)) # g <- spatialgraph(S, Z) # # spatialgraph(S, Z) # spatialgraph(S, Z, k = 1) # spatialgraph(S, Z, k = 100) # spatialgraph(S, Z, k = 10L, r = 0.1) # spatialgraph(S, Z, k = 10.0, r = 0.1) # spatialgraph(S, Z, k = 10, r = 1.0) # # # Multiple data sets: Spatial locations fixed for all replicates within a given data set # K <- 15 # number of data sets # n <- sample(50:100, K, replace = TRUE) # number of spatial locations can vary between data sets # S <- lapply(1:K, function(k) matrix(runif(n[k] * 2), n[k], 2)) # Z <- lapply(1:K, function(k) matrix(runif(n[k] * m), n[k], m)) # g <- spatialgraph(S, Z) # # # Multiple data sets: Spatial locations varying between replicates within a given data set # S <- lapply(1:K, function(k) { # lapply(1:m, function(i) { # ni <- sample(50:100, 1) # randomly generate the number of locations for each replicate # matrix(runif(ni * 2), ni, 2) # generate the spatial locations # }) # }) # Z <- lapply(1:K, function(k) { # lapply(1:m, function(i) { # n <- nrow(S[[k]][[i]]) # runif(n) # }) # }) # g <- spatialgraph(S, Z) # })