test_that("MCAR sanity: EL equals respondent mean (large N)", { set.seed(7001) N <- 3000 X <- rnorm(N) Y <- 1.5 + 0.6 * X + rnorm(N) p <- plogis(-0.5) # constant response probability, independent of Y R <- runif(N) < p df <- data.frame(Y_miss = Y, X = X) df$Y_miss[!R] <- NA_real_ eng <- el_engine(variance_method = "none", standardize = FALSE) fit <- nmar(Y_miss ~ 1, data = df, engine = eng) mu_resp <- mean(Y[R], na.rm = TRUE) expect_true(fit$converged) expect_lt(abs(as.numeric(fit$y_hat) - mu_resp), 5e-3) })