# Test varia require(MuMIn) packageVersion("MuMIn") options(na.action = "na.fail") #print(packageDescription("MuMIn", fields = "Version")) # TEST binary response --------------------------------------------------------- ldose <- rep(0:5, 2) numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16) sex <- factor(rep(c("M", "F"), c(6, 6))) SF <- cbind(numdead, numalive=20-numdead) budworm.lg <- glm(SF ~ sex*ldose, family = binomial) dd <- dredge(budworm.lg, trace=FALSE) gm <- get.models(dd, 1:4) model.avg(gm) # The same, but use cbind directly in the formula budworm.lg <- glm(cbind(numdead, numalive=20-numdead) ~ sex*ldose, family=binomial) dd <- dredge(budworm.lg, trace=TRUE) avgmod <- model.avg(get.models(dd, 1:4)) # TEST for consistency of vcov and se calculation ------------------------------ if(!isTRUE(all.equal(coefTable(avgmod, adjust.se = FALSE)[,2], sqrt(diag(vcov(avgmod))), tolerance = .001))) stop("'vcov' has a problem") # TEST evaluation from within function ----------------------------------------- budworm <- data.frame(ldose = rep(0:5, 2), numdead = c(1, 4, 9, 12, 18, 20, 0, 2, 6, 10, 12, 16), sex = factor(rep(c("M", "F"), c(6, 6)))) budworm$SF <- cbind(numdead = budworm$numdead, numalive = 20 - budworm$numdead) # evaluate within an exotic environment (function(dat) (function(dat2) { #mod <- glm(SF ~ sex*ldose, data = dat2, family = "quasibinomial", trace=T) mod <- glm(SF ~ sex*ldose, data = dat2, family = "binomial") #mod <- glm(SF ~ sex*ldose, data = budworm, family = "binomial", trace=F) print(dd <- dredge(mod, rank = "QAIC", chat = summary(budworm.lg)$dispersion)) gm <- get.models(dd, subset = NA, family = "binomial") #print(sys.frames()) summary(model.avg(gm)) })(dat))(budworm) rm(list=ls()) # END TESTS