library("MuMIn") options(na.action = "na.fail") data(Orthodont, package = "nlme") fm1 <- lm(distance ~ Sex * age + age * Sex, data = Orthodont) dispersion <- function(object) { wts <- weights(object) if (is.null(wts)) wts <- 1 sum((wts * resid(object, type = "working")^2)[wts > 0])/df.residual(object) } dd <- dredge(fm1, extra = alist(dispersion)) gm <- get.models(dd, subset = 1:4) ma <- model.avg(gm, revised = F) vcov(ma) summary(ma) confint(ma) predict(ma) predict(ma, se.fit = TRUE) predict(ma, data.frame(Sex = "Male", age = 8:12)) rm(list = ls()) data(Cement, package = "MuMIn") nseq <- function(x, len = length(x)) seq(min(x, na.rm = TRUE), max(x, na.rm = TRUE), length = len) fm1 <- glm(y ~ (X1 + X2 + X3)^2, data = Cement) dd <- dredge(fm1) gm <- get.models(dd, subset = 1L:10L) summary(ma <- model.avg(gm)) vcov(ma) summary(ma1 <- model.avg(dd[1L:10L])) summary(ma2 <- model.avg(model.sel(dd[1L:10L], rank = "AICc"))) all.equal(ma$avg.model, ma1$avg.mode) predict(ma) == predict(ma, Cement) predict(ma, se.fit = TRUE) predict(ma, lapply(Cement, nseq))