library(MixAll) testPredict<-function(nbTrain , nbTest) { ## test categorical predictions train1 <- matrix( c( sample(1:3,size=nbTrain,replace=TRUE, prob = c(0.05,0.05,0.9)) , sample(1:3,size=nbTrain,replace=TRUE, prob = c(0.9,0.05,0.05)) , sample(1:3,size=nbTrain,replace=TRUE, prob = c(0.05,0.05,0.9)) , sample(1:3,size=nbTrain,replace=TRUE, prob = c(0.9,0.05,0.05)) ) , ncol =2 ) model <- clusterCategorical(train1,2,models = "categorical_p_pjk") pred <- clusterPredict(train1,model) # more than 5 classification errors is abnormal if ( sum(pred@zi - model@zi) != 0) { print("Predict Categorical failed");return(FALSE)} ##------------------------------------------------------------------------------ ## test Poisson predictions train2 <- matrix( c( rpois(nbTrain,lambda = 1), rpois(nbTrain,lambda = 10) , rpois(nbTrain,lambda = 1), rpois(nbTrain,lambda = 10) ) , ncol =2 ) model <- clusterPoisson(train2,2,models = "poisson_p_lk") pred <- clusterPredict(train2,model) # Predictions should be the same if ( sum(pred@zi -model@zi) != 0) { print("Predict Poisson failed");return(FALSE)} ##------------------------------------------------------------------------------ ## test Gaussian predictions train3 <- matrix( c( rnorm(nbTrain, mean = 1, sd=1), rnorm(nbTrain,mean = 10, sd=1) , rnorm(nbTrain, mean = 1, sd=1), rnorm(nbTrain,mean = 10, sd=1) ) , ncol =2 ) model <- clusterDiagGaussian(train3, 2, models = "gaussian_p_s") pred <- clusterPredict(train3, model) # Predictions should be the same if ( sum(pred@zi -model@zi) != 0) { print("Predict Gaussian failed");return(FALSE)} ##------------------------------------------------------------------------------ ## test gamma predictions train4 <- matrix( c( rgamma(nbTrain, shape = 1, scale=1), rgamma(nbTrain,shape = 10, scale=1) , rgamma(nbTrain, shape = 1, scale=1), rgamma(nbTrain,shape = 10, scale=1) ) , ncol =2 ) ## model <- clusterGamma(train4, 2, models = "gamma_p_ak_b") ## pred <- clusterPredict(train4,model) ## # more than 5 classification errors is abnormal ## if ( sum(pred@zi -model@zi) != 0) ## { print("Predict gamma failed");return(FALSE)} ##------------------------------------------------------------------------------ ## test mixed data predictions train <- list(train1, train2, train3, train4) models <- c("categorical_p_pjk", "poisson_p_lk", "gaussian_p_s","gamma_p_ak_b") model <- clusterMixedData(train, models, 2) pred <- clusterPredict(train, model) # more than 5 classification errors is abnormal if ( sum(pred@zi -model@zi) != 0) { print("Predict mixed failed");return(FALSE)} ##------------------------------------------------------------------------------ return(TRUE) } testPredict(1000, 20)